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1 Background

Figure 1: Example of FL workflow.

Modern distributed networks of devices such as mobile
phones, wearables and smart home devices produce a vast
amount of data used by machine learning models for var-
ious prediction/inference tasks. As the computational ca-
pabilities of these devices grow, along with concerns about
privacy, there is a growing interest in locally storing data
and moving network computation to the edge. This has
motivated federated learning (FL) [1], a popular learn-
ing paradigm that enables privacy-preserving collaborative
training of machine learning (ML) models across a num-
ber of devices by avoiding the need to collect private data
stored at those devices. The canonical problem in federated
learning involves the task of learning a universal, global
statistical model under coordination of a central server.
Typically, the goal is to minimize the objective function

min
x

F (x) ≜
N∑

k=1

pkFk(x), (1)

where N is the total number of devices (referred to as clients in the remainder of this report), x
denotes parameters of the global model, Fk(x) is the loss (empirical risk) of the model on k-th
client’s data Bk, and pk denotes the weight assigned to client k (

∑N
k=1 pk = 1). At each global

round, only the intermediate model updates are communicated to the central server for aggregation
while each clent’ data remains private.

A large number of ML tasks in computer visions (CV) and natural language processing (NLP) have
been adapted to the federated learning framework, demonstrating the capability of FL to produce
highly accurate models by aggregating knowledge from diverse sources. However, several main
challenges including (1) statistical heterogeneity, (2) expensive communication, (3) systems
heterogeneity and (4) safety in distributed learning, adversely affect the performance of FL systems
and make it difficult to deploy FL frameworks in realistic settings. The main focus of my research is to
develop novel FL algorithms addressing the above four challenges and build scalable and trustworthy
collaborate learning systems. In the following, I will shortly introduce my recent work on these topics
and outline future research agenda.

2 Research Projects

2.1 Learning Accurate Global Model in Federated Learning with Statistical Heterogeneity

An early FL method, FedAvg [1], performs well in the settings where the devices train on independent
and identically distributed (IID) data. However, compared to the IID scenario, training on non-IID
data under statistical heterogeneity is detrimental to the convergence speed, variance and accuracy
of the learned model. Figure 2 illustrates objective drift[2] in non-IID FL manifested through large



Figure 2: objective drift: the local optimal model of client 1 may be very distant from the local
optimal model of client 2. Nevertheless, the server that deploys FedAvg still forms the global model
by simply averaging the collected local models. Therefore, the global model converges toward the
average of the two local optimal models x∗ instead of the true global optimal model y∗.

differences between local models trained on substantially different data distributions. Essentially,
objective drift is caused by overfitting the local models due to class imbalance. We studied two
strategies aiming to tackle statistical heterogeneity in FL: (1) data augmentation by synthesizing
artificial data; (2) adding regularization terms to mitigate objective drift in local training.

In our work [3], we proposed framework FedDMPS where each client utilizes Variational Auto-
Encoder (VAE) to generate synthetic data to enrich local dataset and thus ameliorate the detrimental
effects of non-iid data distributions. In particular, each client trains a local VAE model (composed
of encoder, classifier and decoder) with its local private (potentially class-imbalanced) data. The
encoder of the local VAE model is able to extract data representations of raw data in the latent space
and compute class-wise data representations by average. The server matches the pairs of clients
having complementary local datasets and facilitates differentially-private[4] sharing of class-wise
data representations; the clients then deploy the decoder of VAE model to reconstruct artificial data
based on these shared data representations. More details of FedDMPS’s workflow can be found in
Figure 3.

Figure 3: FedDPMS and synthetic data generation. The four parts of the figure depict: (1) finding
data representation of raw data via a local encoder; (2) creating noisy means (by adding Gaussian
noise to the class-wise means of data representations) and filtering out unusable ones with the help of
a local classifier; (3) uploading usable noisy class-wise means to the server; (4) a benefiting client
utilizing the decoder to generate synthetic data from the received noisy class-wise means, expanding
its local dataset.

Although FedDPMS outperforms state-of-the-art Federated Learning methods on image classification
tasks with varied levels of heterogeneity across clients, it does requires additional computation and
memory resources (almost double) to train a decoder for each client. In another line of our work,
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FedHKD [5], we continue to exploit the shared class-wise data representations as extra information to
regularize client’s local objective function without introducing significant computation and memory
overhead. In particular, we apply the ideas from knowledge distillation [6], improving it in FL settings
by removing the need for a public dataset previously required at the server. To be specific, each
client k learns a feature extractor Rk(·) and a classifier Gk(·) and uses them to compute the local
knowledge – average class-wise features and the corresponding predictions on clients’ data – as
follows:

hc
k =

1

N c
k

∑
si∼Bc

k

Rk(si) +N (0, σ2
k),∀c ∈ [C] (2)

qc
k =

1

N c
k

∑
si∼Bc

k

Gk(Rk(si)),∀c ∈ [C], (3)

where N c
k denotes the number of samples with label c in client k’s local dataset Bk; Bc

k is a subset
of Bk where all samples have label c; C is the number of classes in the classification task; σ2 is the
predetermined variance of differential privacy (DP) inducing noise [4] that promotes privacy. hc

k and
qc
k are computed and transmitted to the server as the local knowledge of client k, upon which the

server aggregates all collected local knowledge into global knowledge defined as

Hc =

N∑
k=1

pkh
c
k, Qc =

N∑
k=1

pkq
c
k (4)

The entire procedure is shown in Fig. 4.

Figure 4: Procedure of computing local knowledge and aggregation.

Following the aggregation at the server, the global knowledge is sent to the clients participating in
the next FL round to assist in local training. In particular, given data samples (xi, yi) ∼ Bk, the loss
function of client k is formed as

Lk = Ltask + λ
1

C

C∑
c=1

∥Gk(Hc)−Qc∥2 + γ
1

|Bk|
∑

si∼Bk

∥Rk(si)−Hyi∥2 . (5)

Note that the loss function (5) consists of three terms: the empirical risk of the original task and two
regularization terms utilizing global knowledge. Essentially, the second and third terms in the loss
function are proximity/distance functions. The second term is to force a local classifier to output
similar soft predictions when given global data representations while the third term is to force the
features extractor to output similar data representations to the average data representations in the
global knowledge when given local data samples.
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We analyze convergence of FedHKD and conduct extensive experiments on visual datasets in a
variety of scenarios, demonstrating that FedHKD provides significant improvement in both person-
alized as well as global model performance compared to state-of-the-art FL methods designed for
heterogeneous data settings.

2.2 Accelerating Non-IID Federated Learning via Client Selection

Figure 5: The last two network layers.

Constraints on communication resources might make it un-
realistic to require regular contributions to training from all
the clients in a large-scale cross-device FL system. Instead,
only a fraction of clients participate in any given training
round; unfortunately, this further aggravates detrimental
effects of statistical heterogeneity. Selecting informative
clients in non-IID FL settings is an open problem that has
received considerable attention from the research commu-
nity. However, efficient and effective client selection in FL
remains an open challenge, motivating us develop a novel
heterogeneity-guided adaptive client selection method.

If the server were given access to clients’ data label distributions, selecting clients would be relatively
straightforward. However, privacy concerns typically discourage clients from sharing such informa-
tion. In our latest work, HiCS-FL [7], we explored the universal property of the gradient of bias of the
output layer (see Figure 5) in classification tasks and proposed a novel method to estimate the data
label distribution of each client based on the local updates of the output layer’s bias. In particular, we
assume that the model is trained by minimizing the cross-entropy (CE) loss over one-hot labels – a
widely used multi-class classification framework. Relying on the discovered gradient’s property, we
propose a novel method to estimate the client’s data label distribution with theoretical guarantees.

Specifically, we quantify heterogeneity of clients’ data by an entropy-like measure H(D(k)) ≜

−
∑C

i=1 D
(k)
i lnD

(k)
i , where D(k) denotes label distribution of client k’s data. Under the constraint

of privacy, the server does not know true D(k); hence we approximately compute H(D(k)) using the
local update ∆b(k) from client k,

H(D(k)) ≈ Ĥ(D(k)) = H(softmax(∆b(k), T )), (6)

where softmax(∆b(k), T )i = exp(∆b
(k)
i /T )/

∑C
c=1 exp(∆b

(k)
c /T ), 1 ≤ i ≤ C; here T is a scaling

hyper-parameter (so-called temperature). We provided theoretical analysis and showed that the
difference between H(D(k)) and Ĥ(D(k)) is bounded. Utilizing the approximation method defined
above, the server is capable of identifying clients with class-balanced datasets and gives priority to
selecting those clients in order to achieve faster convergence and higher test accuracy of the global
model.

2.3 Mixed-Precision Quantization for Federated Learning on Resource-Constrained
Heterogeneous Devices

In distributed machine learning applications, devices such as mobile phones, wearables and/or smart
homes often operate with heterogeneous resources. The clients with lower computation and memory
budget may not afford learning local models with the same architecture as the clients with powerful
resources. Approaches to customizing model architectures to clients with varied capabilities by
pruning [8] and quantization [9] have been subjects of many studies in the FL community. However,
existing techniques leave much to be desired. For example, quantization techniques, either Post-
Training Quantization (PTQ) or Quantization-Aware Training (QAT), require a full precision model
as a teacher of quantized models which can not be applied in FL directly – the clients with low
resources cannot run full precision model due to the memory peak constraint. Our latest work aims to
address the challenges of quantization in federated learning under heterogeneous source constraints.
Specifically, we aim to develop a mixed-precision quantization (MPQ) method that takes into account
limitations on each client’s resources, without running a full precision model on devices.

To this end we introduce FedMPQ [10], a novel Federated learning algorithm with Mixed-Precision
Quantization, which enables training of quantized local models within the allocated bit-width budget.
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FedMPQ first initializes local models as fixed-precision quantized networks that satisfy clients’
average bit-width budget, and then converts these quantized networks into a representation that allows
bit-level sparsity-promoting training. In particular, while learning local models whose parameters
admit binary representation, the clients deploy a group Lasso regularization term which imposes a
trade-off between the task loss and bit-sparsity. The precision of layers that end up having parameters
which exhibit higher degree of sparsity is reduced to allow increasing precision of other layers, as
illustrated in Figure.6. During the aggregation step, FedMPQ employs the pruning-growing strategy
where the server aggregates clients’ models (locally trained at potentially different bit-widths) to
produce a full precision global model. Before transmitting the global model to a client, the bit-width
of the model is adjusted to match the client’s bit-width budget.

Figure 6: Procedure of bit-level pruning.

2.4 Recovering Labels from Local Updates in Federated Learning

While clients’ privacy is a main motivation for federated learning, recent work [11] shows the
possibility of extracting private data from the model updates via gradient inversion attack. This kind
of attack can be described as an inverse problem

s = argmin
s,y

∥∇xFk(s,y)−∇xFk(s
∗,y)∥2 , (7)

where s∗ is the true private data and ∇xFk(s
∗,y) denotes the measurements. Although the original

attack in [11] performs well only when the federated learning system involves small batch size (for
instance, 2 or 4), the subsequent studies [12] improved the gradient inversion attack for larger batch
sizes under some strong assumptions on an untrained model. To explore potential vulnerabilities of
privacy in federated learning, our latest work is developing a novel label recovery scheme, Recovering
Labels from Local Updates (RLU), which provides near-perfect accuracy when attacking untrained
(most vulnerable) models and achieves comparable performance even given a well-trained model.

(a) Ground Truth (b) IG (c) Improved by RLU

Figure 7: Batch image reconstruction (batch size set to 9) on CIFAR10 compared to IG [11]. We
select the best reconstructed batch for visualization and display the average metrics of the selected
batches.
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More significantly, RLU achieves high performance even in realistic real-world settings where the
clients in an FL system run multiple local epochs, train on heterogeneous data, and deploy various
optimizers to minimize different objective functions. Specifically, RLU estimates labels by solving
a least-square problem that emerges from the analysis of the correlation between labels of the data
points used in a training round and the resulting update of the output layer. The experimental results
on several datasets, architectures, and data heterogeneity scenarios demonstrate that the proposed
method consistently outperforms existing baselines, and helps improve quality of the reconstructed
images in GI attacks in terms of both PSNR and LPIPS, as illustrated in Fig. 7.

3 Future Directions

In addition to the topics outlined in the previous section, there are other interesting direction that I
would like to explore in my research. These include:

• Robust Aggregation in Federated Learning. The vanilla Federated Learning, FedAvg,
aggregates local models into the global model by naively computing their weighted average.
Such simple aggregation is vulnerable to Byzantine Clients who are providing detrimental
local updates or conducting backdoor attack. It is critical to develop more robust aggregation
methods to deploying FL systems in real work.

• Federated Continual Learning. Continual learning (CL) is an extensively researched sub-
ject focused on developing a comprehensive model capable of adapting to new data domains
through fine-tuning while maintaining optimal performance on previously encountered data
domains. However, privacy constraints in federated learning pose challenges for directly
applying schemes from continual learning, such as data replay or knowledge distillation.
Furthermore, data heterogeneity among clients in federated learning exacerbates the problem
of “catastrophic forgetting" observed in continual learning. In this setting, I am interested in
pursuing development of effective continual learning frameworks for privacy-preserving
federated learning systems.
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