
Federated Learning in Non-IID Settings Aided by Differentially Private
Synthetic Data

Huancheng Chen, Haris Vikalo
Universitiy of Texas at Austin, Austin, Texas

huanchengch@utexas.edu,hvikalo@ece.utexas.edu

Abstract

Federated learning (FL) is a privacy-promoting frame-
work that enables potentially large number of clients to col-
laboratively train machine learning models. In an FL sys-
tem, a server coordinates the collaboration by collecting
and aggregating clients’ model updates while the clients’
data remains local and private. A major challenge in feder-
ated learning arises when the local data is non-iid – the set-
ting in which performance of the learned global model may
deteriorate significantly compared to the scenario where the
data is identically distributed across the clients. In this pa-
per we propose FedDPMS (Federated Differentially Private
Means Sharing), an FL algorithm in which clients aug-
ment local datasets with data synthesized using differen-
tially private information collected and communicated by
a trusted server. In particular, the server matches the pairs
of clients having complementary local datasets and facil-
itates differentially-private sharing of the means of latent
data representations; the clients then deploy variational
auto-encoders to enrich their datasets and thus ameliorate
the effects of non-iid data distribution. Our experiments on
deep image classification tasks demonstrate that FedDPMS
outperforms competing state-of-the-art FL methods specifi-
cally developed to address the challenge of federated learn-
ing on non-iid data.

1. Introduction
The need for massive amounts of high-quality training

data in deep learning (e.g., ImageNet [19], COCO [24]) cre-
ates a major challenge in settings where data is distributed
across a potentially large number of users’ devices; in par-
ticular, constraints on communication resources and users’
privacy concerns often prohibit gathering local data and
training models at a central location. In response, feder-
ated learning (FL) where users collaboratively train a global
model without revealing personal data has emerged as a
privacy-promoting and communication-efficient distributed
alternative to centralized learning [2, 15, 22, 42].

In FL systems, a subset of users’ devices updates a global

model by training on local data; a server coordinates the
training process by selecting the users, collecting the up-
dates, and aggregating them to form a new global model.
The original FL algorithm, Federated Averaging (FedAvg)
[26], chooses users at random and updates the global model
by averaging the users’ updates; the convergence analysis
provided in [26] assumes that local datasets are indepen-
dent and identically distributed (i.i.d.). Recently, improving
performance of FL systems that deploy sophisticated ML
models in a variety of practical scenarios has received con-
siderable amount of attention [10, 12, 16, 21, 23, 28, 29, 45].

A major challenge in FL presents when the decentral-
ized data is heterogeneous. Indeed, it is unrealistic to ex-
pect that the users participating in a FL system train on
data generated from identical distributions – instead, dis-
tributions of labels will likely differ between the partici-
pating devices. This is particularly pronounced in setting
where the training data is limited, possibly to the extent that
only a subset of classes is present in the users’ datasets.
Since in such scenarios performance of FedAvg may sig-
nificantly deteriorate, a number of approaches for learning
from heterogeneous distributed data has recently been pro-
posed [16, 20, 23]. Data heterogeneity in FL systems de-
ploying deep learning networks and training on complex
datasets was studied in [20] where a regularization term is
introduced in order to impose contrastive learning on local
updates, effectively aligning those updates with the global
objective. However, as we illustrate in our experiments
(see Section 4), this approach fails to perform well on im-
balanced data partitions. Difficulties in learning a global
model under data heterogeneity have also motivated various
clustering and personalization approaches to FL including
Model-Agnostic Meta-Learning (MAML) and its variants
that rely on client clustering [4, 5, 8, 30, 32, 41].

In this work we address the challenge of data hetero-
geneity and scarcity in learning a global model by enabling
clients to locally synthesize data using parameters acquired
and shared in a privacy-preserving manner. In particular,
the proposed federated differentially-private means sharing
(FedDPMS) framework allows each client to locally gener-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5026

ate synthetic data by relying on means of latent data repre-
sentations exchanged in differentially-private (DP) manner
between clients matched by a trusted server. The server co-
ordinating the training process is assumed to be provided
partial information about the clients’ data distributions (in
particular, indices of the most abundant and the least abun-
dant classes), and is therefore capable of matching the pairs
of clients whose local datasets are complementary. Un-
like the existing data augmentation approaches to FL which
utilize Generative Adversarial Networks (GANs) [3, 9, 34],
our proposed framework relies on simple Variational Auto-
Encoders (VAEs) well-suited to the classification tasks of
interest. Privacy of sharing the (noisy) means of latent rep-
resentations is quantified by utilizing the differential privacy
mechanism. To test the proposed FedDPMS framework, we
conduct extensive numerical studies on image classification
tasks using Fashion-MNIST [40], CIFAR-10 and CIFAR-
100 datasets. In those experiments FedDPMS outperforms
state-of-the-art approaches, particularly in settings where
the local data comes from diverse distributions.

2. Related Work
2.1. Federated Learning on Heterogeneous Data

Approaches to FL that aim to overcome challenges of
training a global model on heterogeneous data can be
broadly organized in two categories. The first category in-
cludes techniques that attempt to improve the model ag-
gregation step performed by the server. Examples include
PFNM [44], a Bayesian non-parametric approach for ex-
tracting layers from local models and using them to up-
date the corresponding layers in the global model. While
PFNM targets relatively simple architectures, FedMA [37]
takes a step further and extends the same ideas to CNNs
and LSTMs. In [38], the authors present a framework for
the analysis of convergence of FL on heterogeneous data,
along with a normalized averaging method, FedNova [38],
that aims to eliminate objective inconsistencies (i.e., pre-
vent convergence of the global model to a stationary point
of the mismatched objectives) caused by naive aggregation
of local models. The second category of methods for FL on
heterogeneous distributed data is focused on reducing the
drift in local training. To this end, FedProx [23] introduces
a proximal term to the learning objective of each client with
the goal of making local training aligned with the global ob-
jective. SCAFFOLD [16] utilizes predictive variance reduc-
tion [14] to introduce control variates and correct local up-
dates. The above two studies were verified in experiments
on MNIST and EMINIST with multinomial logistic regres-
sion and fully connected two-layer networks. Recently, [20]
tested FedProx and SCAFFOLD on more challenging tasks
that involve deep learning models, showing that those two
methods unfortunately offer little to no advantage over Fe-
dAvg in the considered scenarios. As an alternative, [20]

propose the Moon algorithm motivated by the local/global
model proximity idea of FedProx but instead of the l2-norm
term, the proximity is imposed via a contrastive term in the
objective of local training. Another study, FedDyn [1], pro-
poses a dynamic regularizer to promote convergence of the
local loss to a stationary point of the global loss. Build-
ing on top of SCAFFOLD, FedDC [7] introduces an auxil-
iary local drift variable which serves as a dynamic regular-
izer helping narrow the gap between local models and the
global model. While the above approaches utilize different
loss functions, ultimately they all deploy the same strategy
of introducing a regularization term to prevent from overfit-
ting in local training.

2.2. Domain Generalization in Federated Learning
A set of methods complementary to the techniques in

Section 2.1 relies on domain generalization, a method
which aims to improve generalization ability of models by
training them on data from multiple source domains. Such
techniques include FedDG [25], a method that allows each
client to transfer its amplitude spectrum, decomposed from
raw data, to a bank at the server. The server shares the col-
lected amplitude spectrum with all clients, enabling them
to synthesize new distribution via interpolation and help-
ing improve local training. However, FedDG is unable to
enrich class diversity since the phase spectrum is not shared
due to privacy concerns. Another study, [11], employs zero-
shot data augmentation and relies on the statistics of the
batch normalization (BN) layers to reduce the variance of
test accuracy. FedMix [43] presents a framework for shar-
ing clients’ averaged local data via Mixup [46]; privacy
of clients in FedMix may still be compromised since the
only effort to protect it is based on averaging raw data.
FedDA [39] utilizes the attention mechanism [36] to en-
able the server to aggregate local per-label knowledge and
create global per-label knowledge, ultimately enabling data
augmentation via conditional variational autoencoder [31].
However, aggregation of per-label knowledge in highly
non-iid setting (e.g., only a few classes are present in the
local dataset) presents the same challenge: local per-label
knowledge is drifting from the expectation of the global per-
label knowledge. FedDPMS aims to address this problem
by matching pairs of client and generating complementary
data using shared mean of latent representations.

3. Differentially Private Mean Sharing
3.1. Overview of the Proposed Scheme

Both existing approaches to dealing with data hetero-
geneity – improving model aggregation at the server and
reducing model drift in local training – struggle when the
differences between local data distributions are significant
(e.g., the clients completely missing some class labels). To
this end, in this paper we propose an alternative framework
that aims to provide privacy-preserving domain generaliza-

5027

tion by enhancing and balancing local datasets. In partic-
ular, FedDPMS relies on sharing differentially-private in-
formation needed to generate representative synthetic data
– specifically, the clients share noisy versions of averaged
latent representations that their encoders extract from local
data. Since the proposed framework facilitates learning in
non-iid settings by enriching the diversity of clients’ data,
it does not compete with the prior work in Section 2 – in-
stead, FedDPMS is complementary to and may potentially
be combined with the existing methods for FL on non-iid
distributed data. In the upcoming discussions, for illustra-
tion purposes we will repeatedly invoke the image classifi-
cation task as a use case.

3.2. Network Architecture and Training Objective
The global model and local models in an FL system typ-

ically share the same network structure. In our proposed
framework, the model consists of three components: an en-
coder, a decoder and a classifier. The encoder learns data
representation utilizing convolutional layers; in particular,
data samples are encoded into a mean µ and a variance
σ2
z , and represented by a latent variable z ∼ N (µ, σ2

z).
Given the encoder’s architecture, a symmetric decoder is
designed by relying on up-sampling and transposed convo-
lutions. The final component of the model is a classifier
that consists of multiple linear layers and maps the latent
variable z into a categorical vector p which quantifies the
likelihood of each class. The described architecture and the
principle of Variational Auto-Encoder (VAE) are illustrated
in supplementay material section 1 and 6.

The training starts with a preliminary step which is fo-
cused on minimizing a loss that consists of three compo-
nents: ℓ1, the cross-entropy between a prediction and the
ground truth; ℓ2, the Kullback-Leibler divergence between
the prior distribution p(z) and the approximated distribu-
tion q(z) (parametrized by mean and variance in the Gaus-
sian case); and ℓ3, the reconstruction loss defined as the
mean-square error between the original and reconstructed
data points. Formally,

ℓ1 = CEloss
(
Fwt

i
(x), y

)
, ℓ2 = KLDloss (µ, σz) ,

ℓ3 = MSEloss (x̂, x)

where Fwt
i
(·) denotes the entire network with parameters

wt
i , x and x̂ are the input and its reconstruction, respectively,

and y denotes the ground-truth. The local training loss is
formed as

ℓ = ℓ1 + λ(ℓ2 + ℓ3),

where λ is a hyper-parameter. In our experiments, we fine-
tune the hyper-parameter and report the performance with
the best λ. The training then enters the secondary phase,
where we train only the encoder and classifier (i.e., the op-
timization focuses on ℓ1). This is elaborated next.

3.3. The Proposed Learning Scheme – FedDPMS
As stated in Section 3.2, the training of FedDPMS is or-

ganized in two stages. I. Preliminary training. Each client
locally trains a VAE and sends the parameters of the re-
sulting encoder and classifier to the server; the server ag-
gregates the received information and shares the resulting
global model (encoder and classifier) with the clients (ex-
cept in the last round of training, please see Section 3.3.1).
II. Secondary training. There are four steps in each round t
of the secondary training. (1) Client matching: The server
is given partial information about the selected clients’ data
distributions (i.e., indices of the most and the least abun-
dant classes) but has no access to raw data which remains
private; based on the received information, for each client
the server identifies the most informative latent represen-
tation statistics (specifically, the most informative means
of latent representations); (2) Data synthesis: The server
communicates (noisy) means of latent representations and
the global decoder to the clients in need of certain data
classes; using the global decoder and the information re-
ceived from the server, these clients synthesize samples
of locally missing or underrepresented classes and incor-
porate the synthesized samples into their local datasets.
(3) Model training: the selected clients locally train en-
coders and classifiers using augmented datasets; the up-
dated models are collected and aggregated by the server. (4)
DPMS: The selected clients who prior to the current train-
ing round have not shared latent representation information
upload the indices of their top-n most abundant classes and
differentially-private means of latent data representation to
the server. The training procedure outlined in this section is
formalized as Algorithm 1. In the next two subsections, we
provide further informative details of the preliminary and
secondary training.

3.3.1 Preliminary training
During preliminary training, each client trains a VAE ca-
pable of compressing/reconstructing data and recognizing
data labels. To curtail communication costs, only the en-
coder and classifier’s weights are uploaded to the server (ex-
cept in the last round of the preliminary training). Formally,
at the beginning of global round t, the server sends the
global encoder and classifier models {wt

e, w
t
c} to the clients.

The clients use {wt
e, w

t
c} to initialize training VAEs on local

data (decoder is not initialized), and run several epochs of
the stochastic gradient descent; by the end of those epochs,
the ith client has obtained updates {wt

i,e, w
t
i,c, w

t
i,d}. Fi-

nally, the server aggregates the updates {wt
i,e, w

t
i,c} into the

latest global model {wt+1
e , wt+1

c }. In the last round of pre-
liminary training, each selected client is requested to up-
load the full update {wt

i,e, w
t
i,c, w

t
i,d} so that the server can

aggregate global decoder wd; at that point, local decoders
may be deleted to free up memory.

5028

Algorithm 1 (FedDPMS)

Require:
Local datasets from K clients, D = {D1,D2, . . .DK};
the number of participating clients k each round; the
number of preliminary training rounds Tp; the number
of global epoches T .

Ensure:
The final global model wT

1: Server executes:
2: randomly initialize (w0

e , w
0
c), A = ∅,B = ∅, C =

∅,Z = ∅
3: for t = 0, . . . , Tp − 1 do
4: St ←− k clients selected at random
5: (wt+1

e , wt+1
c)←− PreTrain(t, wt

e, w
t
c,St)

6: end for
7: for t = Tp, . . . , T − 1 do
8: St ←− k clients selected at random
9: (wt+1

e , wt+1
c)←−

10: SecTrain(wt
e, w

t
c,St,A,B, C,Z)

11: end for
12: return wT = (wT

e , w
T
c)

3.3.2 Secondary training
Recall that in this stage clients update the encoder and
classifier by optimizing the cross-entropy between a pre-
diction and the ground truth while disregarding the diver-
gence and reconstruction loss; these updates are formed by
training on augmented datasets. For the sake of compu-
tation and communication efficiency, each selected client
shares its means of latent data representations and augments
the local dataset only once, regardless of how many times
the client is selected by the server; as our results demon-
strate, this is sufficient to improve the performance of the
learned model. To avoid repeating information sharing /
dataset augmentation, the server maintains four sets: (1)
the set of clients who shared information (i.e. who en-
coded original data into latent representations and shared
noisy means of latent representations to the server), A; (2)
the set of clients who benefited from the shared informa-
tion (i.e., who augmented their local datasets with synthe-
sized artificial data), B; (3) the set C = {Ci|i ∈ A}, where
Ci = (C1i , . . . , Cni) indicates the n most abundant classes
in the local dataset of client i ∈ A}; and (4) the set of
shared latent representation means, Z = {Zi|i ∈ A},
where Zi = {(z̃1i,1, . . . , z̃1i,α), . . . , (z̃ni,1, . . . , z̃ni,α)}, α is the
number of repeatedly generated noisy means z̃ci of the la-
tent representation of the (abundant) class c in the local
dataset available to client i. These four sets are initialized
as empty at the beginning of the secondary training. The
described procedure for secondary training is formalized as
Algorithm 2.
Client matching. Let St denote the set of clients selected

Algorithm 2 SecTrain

Require:
global model wt

e, w
t
c; selected k clients St; assisting

clients A; benefited clients B; abundant class C; shared
means Z; local datasets at k clients, D = {Di|i ∈ St};
generation quota α; standard deviation of additive noise
σ.

Ensure:
The global model wt+1

e , wt+1
c

1: R ←−Matching(St,A, C)
2: for i ∈ St in parallel do
3: ifR ≠ ∅ AND i /∈ B then
4: if client i did not download wd then
5: download the global decoder wd

6: end if
7: download ZRi from the server
8: D̃i ←− Synthesis(wd,ZRi

)
9: D̄i ←− D̃i ∪ Di

10: the server executes: B ←− B ∪ i
11: end if
12: download wt

e, w
t
c from the server

13: upload: (wt
e,i, w

t
c,i)←− Optim(wt

e, w
t
c, D̄i)

14: if i /∈ A then
15: if client i did not download wd then
16: download the global decoder wd

17: end if
18: (Ci,Zi)←− DPMS(wt

e,i, w
t
c,i,wd,Di, α, σ)

19: end if
20: end for
21: Server executes:
22: (A, C,Z)←− (A, C,Z) ∪i∈St

(i, Ci,Zi)
23: |D̄t| ←−

∑
i∈St
|D̄i|

24: wt+1 ←−
∑

i∈St

|D̄i|
|D̄t| (w

t
e,i, w

t
c,i)

25: return wt+1

in training round t. Based on the information about the
most and least abundant classes in local datasets, the server
decides for each client who should they receive assistance
from (i.e., which information in Z should they be given).
The matching is based on the distance between the clients’
data distributions; in particular, client i is scheduled to be
the recipients of client j’s latent space information if the
server identifies that client j’s data distribution is such that
the samples drawn from it would significantly diversify
client i’s data.1 Specifically, each client i ∈ St still seek-
ing to diversify local data sends indices of n classes in its
dataset with the fewest samples to the server; let Hi denote
the set of the ith client’s “data scarce” classes. Having re-
ceivedHi, the server identifies client j having the set of data

1For convenience, we refer to client i as the “benefiting client” and to
client j as the “assisting client”.

5029

abundant classes Cj that intersects with Hi more than any
other set of data abundant classes. After matching, Zj and
the global decoder are sent to client i. Note that client j’s
means of latent data representations Zj are sent to client i
by the server – there is no direct connection between clients
i and j.

In the first round of secondary training, the server does
not pursue matching sinceA,B, C andZ are empty sets; the
sets are augmented with new elements in the DPMS step.
While our experiments demonstrate remarkable perfor-
mance improvements of FedDPMS over competing meth-
ods despite providing a client in need of synthetic data with
the latent representation of only one of its peers, the match-
ing algorithm can readily be extended to identifying several
“assisting” clients for a “benefitting” client. The proposed
method for client matching is formalized as Matching Al-
gorithm in supplementary material section 3.
Data synthesis. When client i receives a set of noisy means
of latent data representations and the global decoder, it uti-
lizes the global decoder wd to generate synthetic data D̃i;
the synthetic data is merged with the local dataset Di to
form D̄i. The client then proceed to perform local model
update by training on D̄i, and uploads the result to the
server. Upon receiving the update, the server adds index
i to the set of indices of clients who completed data diver-
sification, B. Samples of synthetic images are provided in
supplementary material section 4.
Model training. After generating synthetic data, each
client i has access to an augmented local dataset D̄i. When
updating the model, the client samples |Di| points uni-
formly at random from D̄i and utilizes only the sampled
points for gradient computation (|·| denotes the set cardinal-
ity). This is to maintain the same complexity of the update
step as FedAvg. After generating synthetic data, each client
i has access to an augmented local dataset D̄i. When up-
dating the model, the client samples |Di| points uniformly
at random from D̄i and utilizes only the sampled points for
gradient computation (| · | denotes the set cardinality). This
is to maintain the same complexity of the update step as Fe-
dAvg.
DPMS. Following model training at round t, selected client
i forms updated encoder wt

e,i and classifier wt
c,i; recall that

the client received the global decoder wd which is no longer
being updated. If the client did not share latent represen-
tation information in the previous rounds, it utilizes wt

e,i

to compute the means of latent representations for its n
most abundant classes; note that in this step we only utilize
the original (real) data to form latent representations. Let
us denote the computed means by (z̄

C1
i

i , . . . , z̄
Cn
i

i), where
C1i , . . . , Cni denote the indices of the most abundant classes
in the ith client’s dataset. The means are then perturbed by
an additive zero-mean Gaussian noise N (0, σ2) (see Fig-
ure 1). There are two benefits of adding the noise: first,

it introduces diversity in the synthetically generated data;
and, second, it endues the shared information with differ-
ential privacy (more on differential privacy in the next sec-
tion). The noisy corruption of latent representation means,
however, may be so severe to result in unusable synthesized
data; we would like to identify if this is the case before
the client communicates such means to the server. To this
end, the client applies the global decoder wd and utilizes
the (highly accurate) local classifier wt

c,i to attempt recog-
nizing the reconstructed data point. Specifically, the noisy
latent representation means are formed as

z̃
Cj
i

i = z̄
Cj
i

i + δ, (1)

where δ ∼ N (0, σ2) and j ∈ {1, . . . , n}. Using the global
decoder, the client reconstructs x̃Cj

i in the original space,
and then applies the local encoder/classifier to find its pre-
diction ỹ,

x̃Cj
i = wd(z̃

Cj
i

i), ỹ = wt
c,i(w

t
e,i(x̃

Cj
i)). (2)

If the prediction of the classifier is correct, i.e., ỹ =

Cji , we retain the noisy latent representation mean z̃
Cj
i

i

used to synthesize the classified point; otherwise, we de-

clare that z̃
Cj
i

i is unusable and discard it. We continue
this procedure until the number of usable noisy latent
representation means in each abundant class Cji meets a
predetermined quota α (a tunable hyperparameter). Fi-
nally, each client sends its set of noisy encoded means
Zi = {(z̃C

1
i

i,1, . . . , z̃
C1
i

i,α), . . . , (z̃
Cn
i

i,1 , . . . , z̃
Cn
i

i,α)} and their cor-
responding labels to the server.2 Following the DPMS step,
the server appends i, Ci and Zi to A, C and Z , respectively.
In future training rounds, even if sampled again (which in
large-scale systems is highly unlikely), client i will not be
asked to share latent representation information. Moreover,
the client can now delete the global decoder wd to free up
memory; in fact, a selected client maintains the global de-
coder model for at most one round and thus its impact on
average memory consumption is only minor. Further dis-
cussion of communication, computation and memory con-
sumption can be found in supplementary material section
8.

It is worth pointing out that the assisting and benefit-
ing clients each utilize their respective local encoder and
global decoder: the former (in conjunction with its local
classifier and global decoder) to learn latent data represen-
tations, the latter to synthesize artificial data. Such a strat-
egy is desirable for two reasons. First, the local classifier

2To ensure that discarding noisy latent representation means which fail
the test does not affect privacy, we empirically evaluate the standard devi-
ation of the noise present in the perturbed means that have passed the test
and are consequently shared; in experiments, this standard deviation was
verified to be virtually identical to σ in (1), implying that sub-selecting
the means has no impact on the level of privacy introduced by the noise
corruption of latent representation means.

5030

achieves performance superior to the global classifier since
the latter is agglomerated from local models that may have
drifted apart; therefore, local classifiers are more trustwor-
thy decision-makers for selecting usable noisy means. Sec-
ond, we encode raw data using the local encoder of the
assisting client but decode the latent representation means
with the global decoder at the benefiting client; this helps
separate the benefiting client’s synthetic data from the as-
sisting client’s raw data in a way that is complementary to
the separation induced by averaging latent information or
adding noise. While its impact appears challenging to for-
malize analytically, such a strategy intuitively helps protect
the assisting client’s privacy.

3.4. Privacy concerns
For completeness, we here define the differential privacy

mechanism.

Definition 1 (Differential Privacy) A randomized mecha-
nismM : D → R satisfies (ϵ, δ) differential privacy if for
any two adjacent databases d, d′ ∈ D with only one differ-
ent sample, and for any subset of the output S ⊆ R, it holds
that

Pr[M(d) ∈ S] ≤ eϵ Pr [M (d′) ∈ S] + δ. (3)

The output of the random mechanismM is a random distri-
bution; ϵ denotes an upper bound on the distance between
distributions M(d) and M(d′) and can be interpreted as
the privacy budget, while the relaxing factor δ is the proba-
bility that the ε-differential privacy is broken.

Definition 2 (Gaussian noise mechanism) The Gaussian
noise mechanism achieving (ε, δ) differential privacy for
any deterministic function f : D → R is defined as

M(d) = f(d) +N
(
0, S2

f · σ2
)
, (4)

where Sf denotes the maximum of the absolute distance

|f(d)− f (d′)|, and σ >
√

2 log 5
4δ/ε. In other word, if

we add a zero-mean Gaussian noise with variance S2
fσ

2 to
the output of f and set the privacy budget ϵ, the confidence
of the resulting mechanismM is δ ≥ 4

5 exp (−(σϵ)
2/2).

While prior work on data augmentation in federated learn-
ing relied on data averaging for privacy protection [25, 43],
differential attacks may be used to extract individual infor-
mation from the averages. This motivates using concepts
from differential privacy to quantify the privacy provided by
noisy perturbations that FedDPMS injects into latent means.
In related prior work, a number of methods that attempt to
prevent privacy leaks from uploaded local gradients or mod-
els have been proposed in literature [6, 13, 33, 35]. These
methods can readily be adapted to model training and client
matching in FedDPMS. For simplicity, in this paper we
limit our attention to characterizing differential privacy of

sharing noisy latent means. To this end, consider m latent
representations zi ∈ Rl, where l is the dimension of latent
representation, 1 ≤ i ≤ m; each client computes the jth

element of the latent mean z̄ by averaging the correspond-
ing elements of the aforementioned m vectors, 1 ≤ j ≤ l.
Since clients reveal means of latent local data representa-
tions to the server, they may become exposed to the risk of
leaking the latent representation of individual data points;
this, in turn, could potentially be exploited to attempt recon-
struction of raw data. To protect individual latent represen-
tations from a differential attack, we construct the following
differential privacy mechanism. Let us interpret the averag-
ing operation as a deterministic function f(e), where vector
e collects the jth elements of m latent representations. Re-
call the definition of Sf ,

S2
f = max (f(e)− f(e′))

2
,

where e′ is an adjacent input (similar to Def. 1) which
matches e in m − 1 elements. Since we use sigmoids as
the activation functions of the layer generating latent rep-
resentations (applied to all models in this paper), the latent
means are between [0, 1]; therefore,

f(e)−f(e′) ≤ 1Te′ + 1

m
− 1Te′

m− 1
=

m− 1− 1Te′

m(m− 1)
≤ 1

m
,

where 1T denotes the vector of all ones having the same di-
mension as e′. Thus, Sf = 1

m . For any ϵ > 0 and δ > 0, we
can always identify σ needed to ensure that f(d) achieves
(ϵ, δ) differential privacy according to Definition 2. As an
illustration, for m = 100, ϵ = 0.5 and δ = 0.01, selecting
σ > 3.9 (i.e., the standard deviation of noise Sfσ > 0.039),
we are 99% confident that the privacy is not broken. In fact,
the standard deviation of noise added to latent means in our
experiments is > 1 while m > 100; thus there is abundant
room for lower privacy budget ϵ or higher confidence 1− δ.
In these settings, FedDPMS is very unlikely to break the
privacy of the latent data representations.

4. EXPERIMENTS
4.1. Datasets and Baselines

We implemented all models and ran the experiments in
Pytorch [27], using Adam [17] optimizer with a learning
rate 0.001 for all methods. The period of learning rate de-
cay was set to 10, while the hyper-parameter γ in Adam
was set to 0.5. We used the data batch size of 64. Unless
stated otherwise, the number of local epochs was set to 5,
while the number of global communication rounds was 50;
none of the methods improved performance by further in-
creasing the number of global communication rounds. The
default number of clients participating in federated learning
is 10. For simplicity and due to the relatively small number

5031

Figure 1. FedDPMS and synthetic data generation. The four parts of the figure depict: (1) finding latent representation of raw data via
a local encoder; (2) creating noisy latent means (by adding Gaussian noise to the means of latent data representations) and filtering out
unusable ones with the help of a local classifier; (3) uploading usable noisy latent means to the server; (4) a benefiting client utilizing the
global decoder to generate synthetic data from the received noisy latent means, expanding its local dataset.

of clients, all clients participate in all rounds of the feder-
ated learning process.

To test the performance of our proposed framework, we
conduct experiments on three datasets – Fashion-MNIST
[40], CIFAR10, and CIFAR100 [18]. To control the de-
gree of imbalance in the partitioned data, we utilize Dirich-
let distribution [20, 43, 44] and generate non-iid partitions
with varied concentration parameter β. Note that when the
concentration parameter is very small, e.g. β = 0.5, a
client may have very few samples (possible none) in some
classes, potentially rendering the partition highly imbal-
anced. Examples of clients’ local dataset class distributions
are shown in supplementary material section 5. We com-
pare the test accuracy of FedDPMS with four state-of-the-
art federated learning methods including FedAvg [26], Fed-
Prox [23], FedMix [43] and Moon [20]. The benchmarking
experiments utilize VAEs and a convolutional neural net-
work trained to perform image classification tasks. For de-
tailed specification of the network architecture and hyper-
parameters, please see supplementary material section 2.

4.2. Results Analysis
Accuracy comparison. Table 1 compares the test accuracy
of FedDPMS with the concentration parameter β = 0.5 and
default parameter settings against the competing methods.
In such a severely heterogeneous setting, relative improve-
ment of FedDPMS over FedAvg is 3.3%, 4.5% and 6.6%
on FMNIST, CIFAR10 and CIFAR100, respectively; over-
all, FedDPMS achieves the best performance among all ap-
proaches. As for the performance of other methods relative
to each other: FedMix has a significant advantage over Fe-
dAvg on FMNIST while closely tracking, along with Fed-
Prox, performance of FedAvg on the other two datasets.
Moon exhibits a slight improvement over FedAvg on CI-
FAR100 and achieves close 2nd (behind FedDPMS) perfor-
mance on CIFAR10.
Effect of data heterogeneity. As previously stated, the
concentration parameter β controls heterogeneity of the
data partitions – smaller β leads to more severe class im-

Table 1. Test accuracy of FedDPMS and the competing methods
on FMNIST, CIFAR10 and CIFAR100 datasets. We run five trials
with different random seeds and report the mean accuracy.

SCHEME FMNIST CIFAR10 CIFAR100
FEDAVG 0.8476 0.6501 0.3621
FEDPROX 0.8446 0.6553 0.3646
FEDMIX 0.8640 0.6542 0.3498
MOON 0.8458 0.6742 0.3715
FEDDPMS 0.8759 0.6797 0.3861

balance. We use the Dirichlet distribution with β =
{0.1, 0.2, 0.3, 0.4, 0.5} to generate varying data partitions
and study the effect of heterogeneity on different methods.
As the results in Fig. 2 demonstrate, FedDPMS consis-
tently achieves the best performance on FMNIST and CI-
FAR10/100. Among other methods, FedProx closely tracks
FedAvg in all experiments, while Moon is competitive on
CIFAR10 yet performs badly for β = 0.1. The takeaway
from competitive performance of FedMix on FMNIST, but
poor on both CIFAR10 and CIFAR100, is that utilizing in-
terpolation to synthesize samples from raw data succeeds on
simple datasets but does not on more complex ones; more-
over, the approach deployed by FedMix is risky in terms of
potential privacy leaks. In all, the experiments demonstrate
consistently best performance of FedDPMS across different
data distributions and levels of heterogeneity.
Scalability. So far, our experiments involved simulating
federated learning systems with 10 clients. To investi-
gate the scalability of FedDPMS, we vary the number of
clients in experiments on CIFAR100. In particular, the
number of clients is varied across {10, 20, 30, 40, 50}; to
maintain the same amount of data per client as the num-
ber of clients grow, an increasing fraction of CIFAR100
data (10%, 20%, 30%, 40%, 50%) is partitioned and allo-
cated to the clients in these experiments. Meanwhile, we
keep the default heterogeneity setting β = 0.5. The re-
sults of the experiments are reported in Table 2, showing
that FedDPMS outperforms all other approaches. For ex-

5032

(a) FMNIST (b) CIFAR10 (c) CIFAR100

Figure 2. Test accuracy of different approaches as the concentration parameter β takes values from {0.1, 0.2, 0.3, 0.4, 0.5}. We run five
trials with different random seeds and report the mean accuracy.

(a) FMNIST (b) CIFAR10 (c) CIFAR100

Figure 3. Test accuracy of different approaches on FMNIST, CIFAR10 and CIFAR100. All experiments are conducted with the concentra-
tion parameter β = 0.5 and 10 clients. We run three trials with different random seeds and report the mean accuracy.

Table 2. Test accuracy as the number of clients varies from 10
to 50 in steps of 10; the clients utilize 10%-50% samples of CI-
FAR100 with class partitions generated via Dirichlet distribution
with the concentration parameter β = 0.5. We run three trials with
different random seeds and report the mean accuracy.

SCHEME 10 20 30 40 50
FEDAVG 0.1881 0.2401 0.2738 0.2842 0.3066
FEDPROX 0.1844 0.2408 0.2780 0.2914 0.3081
FEDMIX 0.1820 0.2365 0.2676 0.2877 0.3045
MOON 0.1871 0.2375 0.2707 0.2912 0.3095
FEDDPMS 0.2301 0.2695 0.2940 0.3061 0.3208

ample, relative improvement of FedDPMS over FedAvg is
more than 22.3%, 15.6%, 7.3%, 7.7% and 4.6% in the ex-
periments involving 10-50 clients, respectively.
Convergence rate. Fig. 3 shows the test accuracy of all
approaches across the federated training rounds. For Fed-
DPMS, we further experimented by varying duration of the
preliminary training phase (15, 20 and 25). Among all
methods, FedDPMS exhibits the fastest convergence rate
and best accuracy on CIFAR10 and CIFAR100. FedMix
has the slowest convergence rate on CIFAR10/100 but a
slightly higher accuracy than FedDPMS on FMNIST. Af-
ter sharing the latent representation means and augmenting
local datasets with synthetic data, the test accuracy of each
FedDPMS model suddenly increases. The results imply that

the quality of augmented data improves with the number of
preliminary training rounds; however, the longer we wait,
the smaller the number of rounds to train the model on the
augmented dataset. The experiments suggest that setting the
number of preliminary training rounds to 40% of the total
number of allotted rounds is a suitable choice.

5. Conclusion
Data heterogeneity is a critical challenge hindering prac-

tical federated learning systems, potentially causing major
performance deterioration. We propose a novel framework,
FedDPMS, aiming to enable accurate and robust perfor-
mance of federated deep learning models trained on het-
erogeneous distributed datasets. This is accomplished by
sharing differentially-private information which the clients
use to enrich local datasets and thus combat the local
model drift. As our experimental results demonstrate,
FedDPMS outperforms state-of-the-art federated learning
methods on image classification tasks with varied levels
of heterogeneity across clients while requiring only a mi-
nor increase in communication cost. FedDPMS does re-
quires additional computation and memory resources, the
amount of which depends on the specifics of the training
process. In applications where the high accuracy is imper-
ative, FedDPMS provides an attractive and effective frame-
work for overcoming challenges presented by data hetero-
geneity.

5033

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew

Mattina, Paul Whatmough, and Venkatesh Saligrama. Fed-
erated learning based on dynamic regularization. In Interna-
tional Conference on Learning Representations, 2020. 2

[2] Sean Augenstein, H Brendan McMahan, Daniel Ramage,
et al. Generative models for effective ml on private, decen-
tralized datasets. arXiv preprint arXiv:1911.06679, 2019. 1

[3] Sean Augenstein, H Brendan McMahan, Daniel Ramage,
et al. Generative models for effective ml on private, decen-
tralized datasets. arXiv preprint arXiv:1911.06679, 2019. 2

[4] Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu,
Rohan Anil, and Chelsea Finn. Efficiently identifying
task groupings for multi-task learning. arXiv preprint
arXiv:2109.04617, 2021. 1

[5] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco
Lorenzi. Clustered sampling: Low-variance and improved
representativity for clients selection in federated learning.
In International Conference on Machine Learning, pages
3407–3416. PMLR, 2021. 1

[6] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence information
and basic countermeasures. In Proceedings of the 22nd ACM
SIGSAC conference on computer and communications secu-
rity, pages 1322–1333, 2015. 6

[7] Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and
Cheng-Zhong Xu. Feddc: Federated learning with non-iid
data via local drift decoupling and correction. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10112–10121, 2022. 2

[8] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ram-
chandran. An efficient framework for clustered federated
learning. arXiv preprint arXiv:2006.04088, 2020. 1

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 2

[10] Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh.
Fedboost: A communication-efficient algorithm for feder-
ated learning. In International Conference on Machine
Learning, pages 3973–3983. PMLR, 2020. 1

[11] Weituo Hao, Mostafa El-Khamy, Jungwon Lee, Jianyi
Zhang, Kevin J Liang, Changyou Chen, and Lawrence Carin
Duke. Towards fair federated learning with zero-shot data
augmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3310–
3319, 2021. 2

[12] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman
Avestimehr. Pipetransformer: Automated elastic pipelin-
ing for distributed training of transformers. arXiv preprint
arXiv:2102.03161, 2021. 1

[13] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz.
Deep models under the gan: information leakage from col-
laborative deep learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Se-
curity, pages 603–618, 2017. 6

[14] Rie Johnson and Tong Zhang. Accelerating stochastic gradi-
ent descent using predictive variance reduction. Advances in
neural information processing systems, 26:315–323, 2013. 2

[15] Peter Kairouz, H Brendan McMahan, Brendan Avent, et al.
Advances and open problems in federated learning. arXiv
preprint arXiv:1912.04977, 2019. 1

[16] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank J Reddi, Sebastian U Stich, and Ananda Theertha
Suresh. Scaffold: Stochastic controlled averaging for on-
device federated learning. 2019. 1, 2

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[18] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10
(canadian institute for advanced research). 7

[19] Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation, 1(4):541–551,
1989. 1

[20] Qinbin Li, Bingsheng He, and Dawn Song. Model-
contrastive federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021. 1, 2, 7

[21] Qinbin Li, Zeyi Wen, and Bingsheng He. Practical feder-
ated gradient boosting decision trees. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages
4642–4649, 2020. 1

[22] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia
Smith. Federated learning: Challenges, methods, and future
directions. IEEE Signal Processing Magazine, 37(3):50–60,
2020. 1

[23] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. arXiv preprint
arXiv:1812.06127, 2018. 1, 2, 7

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1

[25] Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann
Heng. Feddg: Federated domain generalization on medical
image segmentation via episodic learning in continuous fre-
quency space. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1013–
1023, 2021. 2, 6

[26] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282.
PMLR, 2017. 1, 7

[27] Adam Paszke, Sam Gross, Francisco Massa, et al. Py-
torch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems,
32:8026–8037, 2019. 6

5034

[28] Mohammad Rasouli, Tao Sun, et al. Fedgan: Federated
generative adversarial networks for distributed data. arXiv
preprint arXiv:2006.07228, 2020. 1

[29] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary
Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv Kumar, and
H Brendan McMahan. Adaptive federated optimization.
arXiv preprint arXiv:2003.00295, 2020. 1

[30] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek.
Clustered federated learning: Model-agnostic distributed
multitask optimization under privacy constraints. IEEE
transactions on neural networks and learning systems, 2020.
1

[31] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning
structured output representation using deep conditional gen-
erative models. Advances in neural information processing
systems, 28, 2015. 2

[32] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas,
Jitendra Malik, and Silvio Savarese. Which tasks should be
learned together in multi-task learning? In International
Conference on Machine Learning, pages 9120–9132. PMLR,
2020. 1

[33] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict
Paten. Dp-cgan: Differentially private synthetic data and
label generation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 0–0, 2019. 6

[34] Aleksei Triastcyn and Boi Faltings. Federated generative pri-
vacy. IEEE Intelligent Systems, 35(4):50–57, 2020. 2

[35] Aleksei Triastcyn and Boi Faltings. Federated generative pri-
vacy. IEEE Intelligent Systems, 35(4):50–57, 2020. 6

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[37] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Pa-
pailiopoulos, and Yasaman Khazaeni. Federated learning
with matched averaging. arXiv preprint arXiv:2002.06440,
2020. 2

[38] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and
H Vincent Poor. Tackling the objective inconsistency prob-
lem in heterogeneous federated optimization. Advances
in neural information processing systems, 33:7611–7623,
2020. 2

[39] Hui Wen, Yue Wu, Jingjing Li, and Hancong Duan.
Communication-efficient federated data augmentation on
non-iid data. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3377–
3386, 2022. 2

[40] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms, 2017. 2, 7

[41] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi
Wang, Jing Jiang, and Chengqi Zhang. Multi-center feder-
ated learning. arXiv preprint arXiv:2108.08647, 2021. 1

[42] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong.
Federated machine learning: Concept and applications. ACM
Transactions on Intelligent Systems and Technology (TIST),
10(2):1–19, 2019. 1

[43] Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang.
Fedmix: Approximation of mixup under mean augmented
federated learning. arXiv preprint arXiv:2107.00233, 2021.
2, 6, 7

[44] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh,
Kristjan Greenewald, Nghia Hoang, and Yasaman Khaza-
eni. Bayesian nonparametric federated learning of neural
networks. In International Conference on Machine Learn-
ing, pages 7252–7261. PMLR, 2019. 2, 7

[45] Fengda Zhang, Kun Kuang, Zhaoyang You, Tao Shen, Jun
Xiao, Yin Zhang, Chao Wu, Yueting Zhuang, and Xiaolin
Li. Federated unsupervised representation learning. arXiv
preprint arXiv:2010.08982, 2020. 1

[46] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 2

5035

