
Published as a conference paper at ICLR 2023

THE BEST OF BOTH WORLDS: ACCURATE GLOBAL
AND PERSONALIZED MODELS THROUGH FEDERATED
LEARNING WITH DATA-FREE HYPER-KNOWLEDGE
DISTILLATION

Huancheng Chen1, Chianing Wang2, Haris Vikalo1
1The University of Texas at Austin, TX
2Toyota Motor North America, CA

ABSTRACT

Heterogeneity of data distributed across clients limits the performance of global
models trained through federated learning, especially in the settings with highly
imbalanced class distributions of local datasets. In recent years, personalized fed-
erated learning (pFL) has emerged as a potential solution to the challenges pre-
sented by heterogeneous data. However, existing pFL methods typically enhance
performance of local models at the expense of the global model’s accuracy. We
propose FedHKD (Federated Hyper-Knowledge Distillation), a novel FL algo-
rithm in which clients rely on knowledge distillation (KD) to train local models.
In particular, each client extracts and sends to the server the means of local data
representations and the corresponding soft predictions – information that we refer
to as “hyper-knowledge”. The server aggregates this information and broadcasts
it to the clients in support of local training. Notably, unlike other KD-based pFL
methods, FedHKD does not rely on a public dataset nor it deploys a generative
model at the server. We analyze convergence of FedHKD and conduct exten-
sive experiments on visual datasets in a variety of scenarios, demonstrating that
FedHKD provides significant improvement in both personalized as well as global
model performance compared to state-of-the-art FL methods designed for hetero-
geneous data settings.

1 INTRODUCTION

Federated learning (FL), a communication-efficient and privacy-preserving alternative to training on
centrally aggregated data, relies on collaboration between clients who own local data to train a global
machine learning model. A central server coordinates the training without violating clients’ privacy
– the server has no access to the clients’ local data. The first ever such scheme, Federated Averaging
(FedAvg) (McMahan et al., 2017), alternates between two steps: (1) randomly selected client devices
initialize their local models with the global model received from the server, and proceed to train on
local data; (2) the server collects local model updates and aggregates them via weighted averaging to
form a new global model. As analytically shown in (McMahan et al., 2017), FedAvg is guaranteed
to converge when the client data is independent and identically distributed (iid).

A major problem in FL systems emerges when the clients’ data is heterogeneous (Kairouz et al.,
2021). This is a common setting in practice since the data owned by clients participating in fed-
erated learning is likely to have originated from different distributions. In such settings, the FL
procedure may converge slowly and the resulting global model may perform poorly on the local
data of an individual client. To address this challenge, a number of FL methods aiming to enable
learning on non-iid data has recently been proposed (Karimireddy et al., 2020; Li et al., 2020; 2021a;
Acar et al., 2021; Liu et al., 2021; Yoon et al., 2021; Chen & Vikalo, 2022). Unfortunately, these
methods struggle to train a global model that performs well when the clients’ data distributions differ
significantly.

Difficulties of learning on non-iid data, as well as the heterogeneity of the clients’ resources (e.g.,
compute, communication, memory, power), motivated a variety of personalized FL (pFL) techniques

1

ar
X

iv
:2

30
1.

08
96

8v
2

 [
cs

.L
G

]
 9

 A
pr

 2
02

3

Published as a conference paper at ICLR 2023

(Arivazhagan et al., 2019; T Dinh et al., 2020; Zhang et al., 2020; Huang et al., 2021; Collins et al.,
2021; Tan et al., 2022). In a pFL system, each client leverages information received from the server
and utilizes a customized objective to locally train its personalized model. Instead of focusing on
global performance, a pFL client is concerned with improving the model’s local performance empir-
ically evaluated by running the local model on data having distribution similar to the distribution of
local training data. Since most personalized FL schemes remain reliant upon on gradient or model
aggregation, they are highly susceptible to ’stragglers’ that slow down the training convergence pro-
cess. FedProto (Tan et al., 2021) is proposed to address high communication cost and limitations of
homogeneous models in federated learning. Instead of model parameters, in FedProto each client
sends to the server only the class prototypes – the means of the representations of the samples in
each class. Aggregating the prototypes rather than model updates significantly reduces communica-
tion costs and lifts the requirement of FedAvg that clients must deploy the same model architecture.
However, note that even though FedProto improves local validation accuracy by utilizing aggre-
gated class prototypes, it leads to barely any improvement in the global performance. Motivated by
the success of Knowledge Distillation (KD) (Hinton et al., 2015) which infers soft predictions of
samples as the ’knowledge’ extracted from a neural network, a number of FL methods that aim to
improve global model’s generalization ability has been proposed (Jeong et al., 2018b; Li & Wang,
2019; Lin et al., 2020; Zhang et al., 2021). However, most of the existing KD-based FL methods
require that a public dataset is provided to all clients, limiting the feasibility of these methods in
practical settings.

In this paper we propose FedHKD (Federated Hyper-Knowledge Distillation), a novel FL framework
that relies on prototype learning and knowledge distillation to facilitate training on heterogeneous
data. Specifically, the clients in FedHKD compute mean representations and the corresponding mean
soft predictions for the data classes in their local training sets; this information, which we refer to
as “hyper-knowledge,” is endued by differential privacy via the Gaussian mechanism and sent for
aggregation to the server. The resulting globally aggregated hyper-knowledge is used by clients
in the subsequent training epoch and helps lead to better personalized and global performance. A
number of experiments on classification tasks involving SVHN (Netzer et al., 2011), CIFAR10 and
CIFAR100 datasets demonstrate that FedHKD consistently outperforms state-of-the-art approaches
in terms of both local and global accuracy.

2 RELATED WORK

2.1 HETEROGENEOUS FEDERATED LEARNING

Majority of the existing work on federated learning across data-heterogeneous clients can be orga-
nized in three categories. The first set of such methods aims to reduce variance of local training
by introducing regularization terms in local objective (Karimireddy et al., 2020; Li et al., 2020;
2021a; Acar et al., 2021). (Mendieta et al., 2022) analyze regularization-based FL algorithms and,
motivated by the regularization technique GradAug in centralized learning (Yang et al., 2020), pro-
pose FedAlign. Another set of techniques for FL on heterogeneous client data aims to replace the
naive model update averaging strategy of FedAvg by more efficient aggregation schemes. To this
end, PFNM (Yurochkin et al., 2019) applies a Bayesian non-parametric method to select and merge
multi-layer perceptron (MLP) layers from local models into a more expressive global model in a
layer-wise manner. FedMA ((Wang et al., 2020a)) proceeds further in this direction and extends
the same principle to CNNs and LSTMs. (Wang et al., 2020b) analyze convergence of heteroge-
neous federated learning and propose a novel normalized averaging method. Finally, the third set
of methods utilize either the mixup mechanism (Zhang et al., 2017) or generative models to enrich
diversity of local datasets (Yoon et al., 2021; Liu et al., 2021; Chen & Vikalo, 2022). However, these
methods introduce additional memory/computation costs and increase the required communication
resources.

2.2 PERSONALIZED FEDERATED LEARNING

Motivated by the observation that a global model collaboratively trained on highly heterogeneous
data may not generalize well on clients’ local data, a number of personalized federated learning
(pFL) techniques aiming to train customized local models have been proposed (Tan et al., 2022).
They can be categorized into two groups depending on whether or not they also train a global model.
The pFL techniques focused on global model personalization follow a procedure similar to the plain
vanilla FL – clients still need to upload all or a subset of model parameters to the server to enable
global model aggregation. The global model is personalized by each client via local adaptation

2

Published as a conference paper at ICLR 2023

steps such as fine-tuning (Wang et al., 2019; Hanzely et al., 2020; Schneider & Vlachos, 2021),
creating a mixture of global and local layers (Arivazhagan et al., 2019; Mansour et al., 2020; Deng
et al., 2020; Zec et al., 2020; Hanzely & Richtárik, 2020; Collins et al., 2021; Chen & Chao, 2021),
regularization (T Dinh et al., 2020; Li et al., 2021b) and meta learning (Jiang et al., 2019; Fallah et al.,
2020). However, when the resources available to different clients vary, it is impractical to require
that all clients train models of the same size and type. To address this, some works waive the global
model by adopting multi-task learning (Smith et al., 2017) or hyper-network frameworks (Shamsian
et al., 2021). Inspired by prototype learning (Snell et al., 2017; Hoang et al., 2020; Michieli &
Ozay, 2021), FedProto (Tan et al., 2021) utilizes aggregated class prototypes received from the
server to align clients’ local objectives via a regularization term; since there is no transmission of
model parameters between clients and the server, this scheme requires relatively low communication
resources. Although FedProto improves local test accuracy of the personalized models, it does not
benefit the global performance.

2.3 FEDERATED LEARNING WITH KNOWLEDGE DISTILLATION

Knowledge Distillation (KD) (Hinton et al., 2015), a technique capable of extracting knowledge
from a neural network by exchanging soft predictions instead of the entire model, has been intro-
duced to federated learning to aid with the issues that arise due to variations in resources (com-
putation, communication and memory) available to the clients (Jeong et al., 2018a; Chang et al.,
2019; Itahara et al., 2020). FedMD (Li & Wang, 2019), FedDF (Lin et al., 2020) and FedKT-
pFL (Zhang et al., 2021) transmit only soft-predictions as the knowledge between the server and
clients, allowing for personalized/heterogeneous client models. However, these KD-based federated
learning methods require that a public dataset is made available to all clients, presenting potential
practical challenges. Recent studies (Zhu et al., 2021; Zhang et al., 2022) explored using GANs
(Goodfellow et al., 2014) to enable data-free federated knowledge distillation in the context of im-
age classification tasks; however, training GANs incurs considerable additional computation and
memory requirements.

In summary, most of the existing KD-based schemes require a shared dataset to help align local
models; others require costly computational efforts to synthesize artificial data or deploy a student
model at the server and update it using local gradients computed when minimizing the divergence
of soft prediction on local data between clients’ teacher model and the student model (Lin et al.,
2020). In our framework, we extend the concept of knowledge to ’hyper-knowledge’, combining
class prototypes and soft predictions on local data to improve both the local test accuracy and global
generalization ability of federated learning.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Consider a federated learning system where m clients own local private dataset D1, . . . ,Dm; the
distributions of the datasets may vary across clients, including the scenario in which a local dataset
contains samples from only a fraction of classes. In such an FL system, the clients communicate
locally trained models to the server which, in turn, sends the aggregated global model back to the
clients. The plain vanilla federated learning (McMahan et al., 2017) implements aggregation as

wt =

m∑
i=1

|Di|
M

wt−1i , (1)

where wt denotes parameters of the global model at round t; wt−1i denotes parameters of the local
model of client i at round t− 1; m is the number of participating clients; and M =

∑m
i=1 |Di|. The

clients are typically assumed to share the same model architecture. Our aim is to learn a personalized
model wi for each client i which not only performs well on data generated from the distribution of
the ith client’s local training data, but can further be aggregated into a global model w that performs
well across all data classes (i.e., enable accurate global model performance). This is especially
difficult when the data is heterogenous since straightforward aggregation in such scenarios likely
leads to inadequate performance of the global model.

3.2 UTILIZING HYPER-KNOWLEDGE

Knowledge distillation (KD) based federated learning methods that rely on a public dataset require
clients to deploy local models to run inference / make predictions for the samples in the public

3

Published as a conference paper at ICLR 2023

dataset; the models’ outputs are then used to form soft predictions according to

qi =
exp(zi/T)∑
j exp(zj/T)

, (2)

where zi denotes the ith element in the model’s output z for a given data sample; qi is the ith ele-
ment in the soft prediction q; and T is the so-called ”temperature” parameter. The server collects
soft predictions from clients (local knowledge), aggregates them into global soft predictions (global
knowledge), and sends them to clients to be used in the next training round. Performing infer-
ence on the public dataset introduces additional computations in each round of federated learning,
while sharing and locally storing public datasets consumes communication and memory resources.
It would therefore be beneficial to develop KD-based methods that do not require use of public
datasets; synthesizing artificial data is an option, but one that is computationally costly and thus
may be impractical. To this end, we extend the notion of distilled knowledge to include both the
averaged representations and the corresponding averaged soft predictions, and refer to it as “hyper-
knowledge”; the “hyper-knowledge” is protected via the Gaussian differential privacy mechanism
and shared between clients and server.

Feature Extractor and Classifier. We consider image classification as an illustrative use case.
Typically, a deep network for classification tasks consists of two parts (Kang et al., 2019): (1) a
feature extractor translating the input raw data (i.e., an image) into latent space representation; (2) a
classifier mapping representations into categorical vectors. Formally,

hi = Rφi
(xi), zi = Gωi

(hi), (3)

where xi denotes raw data of client i, Rφi
(·) and Gωi

(·) are the embedding functions of feature
extractor and classifier with model parameters φi and ωi, respectively; hi is the representation
vector of xi; and zi is the categorical vector.

Evaluating and Using Hyper-Knowledge. The mean latent representation of class j in the local
dataset of client i is computed as

h̄ji =
1

N j
i

Nj
i∑

k=1

hj,ki , q̄ji =
1

N j
i

Nj
i∑

k=1

Q(zj,ki , T) (4)

where N j
i is the number of samples with label j in client i’s dataset; Q(·, T) is the soft target

function; hj,ki and zj,ki are the data representation and prediction of the ith client’s kth sample with
label j. The mean latent data representation h̄ji and soft prediction q̄ji are the hyper-knowledge of
class j in client i; for convenience, we denote Kji = (h̄ji , q̄

j
i). If there are n classes, then the full

hyper-knowledge of client i is Ki = {K1
i , . . . ,Kni }. As a comparison, FedProto (Tan et al., 2021)

only utilizes means of data representations and makes no use of soft predictions. Note that to avoid
the situations where Kji = ∅, which may happen when data is highly heterogeneous, FedHKD sets a
threshold (tunable hyper-parameter) ν which is used to decided whether or not a client should share
its hyper-knowledge; in particular, if the fraction of samples with label j in the local dataset of client
i is below ν, client i is not allowed to share the hyper-knowledge Kji . If there is no participating
client sharing hyper-knowledge for class j, the server sets Kj = ∅. A flow diagram illustrating the
computation of hyper-knowledge is given in Appendix. A.3.

Differential Privacy Mechanism. It has previously been argued that communicating averaged data
representation promotes privacy (Tan et al., 2021); however, hyper-knowledge exchanged between
server and clients may still be exposed to differential attacks (Dwork, 2008; Geyer et al., 2017). A
number of studies (Geyer et al., 2017; Sun et al., 2021; Gong et al., 2021; Ribero et al., 2022; Chen
& Vikalo, 2022) that utilize differential privacy to address security concerns in federated learning
have been proposed. The scheme presented in this paper promotes privacy by protecting the shared
means of data representations through a differential privacy (DP) mechanism (Dwork et al., 2006a;b)
defined below.
Definition 1 ((ε, δ)-Differential Privacy) A randomized function F : D → R provides (ε, δ)-
differential privacy if for all adjacent datasets d,d′ ∈ D differing on at most one element, and
all S ∈ range(F), it holds that

P[F(d) ∈ S] ≤ eεP [F (d′) ∈ S] + δ, (5)

4

Published as a conference paper at ICLR 2023

where ε denotes the maximum distance between the range of F(d) and F(d′) and may be thought of
as the allotted privacy budget, while δ is the probability that the maximum distance is not bounded
by ε.
Any deterministic function f : D → R can be endued with arbitrary (ε, δ)-differential privacy via
the Gaussian mechanism, defined next.
Theorem 1 (Gaussian mechanism) A randomized functionF derived from any deterministic func-
tion f : D → R perturbed by Gaussian noise N (0, S2

f · σ2),

F(d) = f(d) +N
(
0, S2

f · σ2
)
, (6)

achieves (ε, δ)-differential privacy for any σ >
√

2 log 5
4δ/ε. Here Sf denotes the sensitivity of

function f defined as the maximum of the absolute distance |f(d)− f (d′)|.
We proceed by defining a deterministic function fl(d

j
i) , h̄ji (l) = 1

Nj
i

∑Nj
i

k=1 h
j,k
i (l) which evalu-

ates the lth element of h̄ji , where dji is the subset of client i’s local dataset including samples with
label j only; hj,ki denotes the representation of the kth sample in dji while hj,ki (l) is the lth element
of hj,ki . In our proposed framework, client i transmits noisy version of its hyper-knowledge to the
server,

h̃ji (l) = h̄ji (l) + χji (l), (7)
where χji (l) ∼ N (0, (Sif)2 · σ2); σ2 denotes a hyper-parameter shared by all clients. (Sif)2 is the
sensitive of function fl(·) with client i’s local dataset.
Lemma 1 If |hj,ki (l)| is bounded by ζ > 0 for any k, then

|fl(dji)− fl(d
j′
i)| ≤ 2ζ

N j
i

(8)

Therefore, Sif = 2ζ

Nj
i

. Note that (Sif)2 depends on N j
i , the number of samples in class j, and thus

differs across clients in the heterogeneous setting. A discussion on the probability that differential
privacy is broken can be found in the Section 4.3. Proof of Lemma 1 is provided in Appendix A.5.

3.3 GLOBAL HYPER-KNOWLEDGE AGGREGATION

After the server collects hyper-knowledge from participating clients, the global hyper-knowledge
for class j at global round t+ 1 , Kj,t+1 =

(
Hj,t+1,Qj,t+1

)
, is formed as

Hj,t+1 =

m∑
i=1

pih̃
j,t
i , Qj,t+1 =

m∑
i=1

piq̄
j,t
i , (9)

where pi = N j
i /N

j , N j
i denotes the number of samples in class j owned by client i, and N j =∑m

i=1N
j
i . For clarity, we emphasize that h̃j,ti denotes the local hyper-knowledge about class j

of client i at global round t. Since the noise is drawn from N
(

0, (Sif)2 · σ2
)

, its effect on the
quality of hyper-knowledge is alleviated during aggregation assuming sufficiently large number of
participating clients, i.e.,

E
[
Hj,t+1(l)

]
=

m∑
i=1

pih̄
j,t
i (l) + E

[
m∑
i=1

piχ
j,t
i (l)

]
=

m∑
i=1

pih̄
j,t
i (l) + 0, (10)

with variance σ2

m2

∑m
i=1(Sif)2. In other words, the additive noise is “averaged out” and effectively

near-eliminated after aggregating local hyper-knowledge. For simplicity, we assume that in the
above expressions N j

i 6= 0.

3.4 LOCAL TRAINING OBJECTIVE

Following the aggregation at the server, the global hyper-knowledge is sent to the clients participat-
ing in the next FL round to assist in local training. In particular, given data samples (x, y) ∼ Di, the
loss function of client i is formed as

L(Di,φi,ωi) =
1

Bi

Bi∑
k=1

CELoss(Gωi
(Rφi

(xk)), yk)

+ λ
1

n

n∑
j=1

||Q(Gωi
(Hj), T)−Qj ||2 + γ

1

Bi

Bi∑
k=1

||Rφi
(xk)−Hyk ||2

(11)

5

Published as a conference paper at ICLR 2023

whereBi denotes the number of samples in the dataset owned by client i, n is the number of classes,
CELoss(·, ·) denotes the cross-entropy loss function, ‖ · ‖2 denotes Euclidean norm, Q(·, T) is the
soft target function with temperature T , and λ and γ are hyper-parameters.

Note that the loss function in (11) consists of three terms: the empirical risk formed using predictions
and ground-truth labels, and two regularization terms utilizing hyper-knowledge. Essentially, the
second and third terms in the loss function are proximity/distance functions. The second term is to
force the local classifier to output similar soft predictions when given global data representations
while the third term is to force the features extractor to output similar data representations when
given local data samples. For both, we use Euclidean distance because it is non-negative and convex.

3.5 FEDHKD: SUMMARY OF THE FRAMEWORK

The training starts at the server by initializing the global model θ1 = (φ1,ω1), where φ1 and ω1

denote parameters of the global feature extractor and global classifier, respectively. At the beginning
of each global epoch, the server sends the global model and global hyper-knowledge to clients se-
lected for training. In turn, each client initializes its local model with the received global model, and
performs updates by minimizing the objective in Eq. 11; the objective consists of three terms: (1)
prediction loss in a form of the cross-entropy between prediction and ground-truth; (2) classifier loss
reflective of the Euclidean norm distance between the output of the classifier and the corresponding
global soft predictions; and (3) feature loss given by the Euclidean norm distance between represen-
tations extracted from raw data by a local feature extractor and global data representations. Having
completed local updates, clients complement their local hyper-knowledge by performing inference
on local data, and finally send local model as well as local hyper-knowledge to the server for ag-
gregation. The method outlined in this section is formalized as Algorithm 1. For convenience, we
provided a visualization of the FedHKD procedure in Appendix. A.4.

Algorithm 1 FedHKD

Input:
Datasets distributed across m clients, D =
{D1,D2, . . .Dm}; client participating rate
µ; hyper-parameters λ and γ; the sharing
threshold ν; variance σ2 characterizing dif-
ferential privacy noise; temperature T ; the
number of global epochs Tr.

Output:
The global model θTr+1 = (φTr+1,ωTr+1)

1: Server executes:
2: randomly initialize (φ1,ω1), K = {}
3: for t = 1, . . . , Tr do
4: St ←− bmµc clients selected at random
5: send the global model φt,ωt, K to clients

in St
6: for i ∈ St do

7: φti,ω
t
i ,Ki ←−LocalUpdate(φt,ωt,K,Di,

σ2, ν, i)
8: end for
9: Aggregate global hyper-knowledge K by

Eq. 9.
10: Aggregate global model θt+1 =

(φt+1,ωt+1)
11: end for
12: return θTr+1 = (φTr+1,ωTr+1)
13:
14: LocalUpdate(φt,ωt,K,Di, σ2

s , i):
15: φti ←− φt, ωti ←− ωt, (x, y) ∼ Di
16: for each local epoch do
17: φti,ω

t
i ←− OptimAlg(L(x, y,K, λ, γ))

18: end for
19: update local hyper-knowledge Ki
20: return φti,ωti ,Ki

3.6 CONVERGENCE ANALYSIS

To facilitate the convergence analysis of FedHKD, we make the assumptions commonly encountered
in literature (Li et al., 2019; 2020; Tan et al., 2021). The details in assumptions and proof are in
Appendix A.6.

Theorem 2. Instate Assumptions 1-3 A.6.1. For an arbitrary client, after each communication
round the loss function is bounded as

E
[
L

1
2 ,t+1
i

]
≤ L

1
2 ,t
i −

E−1∑
e= 1

2

(
ηe −

η2eL1

2

)∥∥∇Le,t∥∥2
2

+
η20L1E

2

(
EV 2 + σ2

)
+ 2λη0L3 (L2 + 1)EV + 2γη0L2EV.

(12)

6

Published as a conference paper at ICLR 2023

Theorem 3. (FedHKD convergence rate) Instate Assumptions 1-3 A.6.1 hold and define regret
∆ = L 1

2 ,1 − L∗. If the learning rate is set to η, for an arbitrary client after

T =
2∆

εE (2η − η2L1)− η2L1E (EV 2 + σ2)− 4ληL3 (L2 + 1)EV − 4γηL2EV
(13)

global rounds (ε > 0), it holds that

1

TE

T∑
t=1

E−1∑
e= 1

2

∥∥∇Le,t∥∥2
2
≤ ε, (14)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

In this section, we present extensive benchmarking results comparing the performance of FedHKD
and the competing FL methods designed to address the challenge of learning from non-iid data. All
the methods were implemented and simulated in Pytorch (Paszke et al., 2019), with models trained
using Adam optimizer (Kingma & Ba, 2014). Details of the implementation and the selection of
hyper-parameters are provided in Appendix. Below we describe the datasets, models and baselines
used in the experiments.

Datasets. Three benchmark datasets are used in the experiments: SVHN (Netzer et al., 2011),
CIFAR10 and CIFAR100 (Krizhevsky et al., 2009). To generate heterogeneous partitions of local
training data, we follow the strategy in (Yoon et al., 2021; Yurochkin et al., 2019; Li et al., 2021a)
and utilize Dirichlet distribution with varied concentration parameters β which controls the level of
heterogeneity. Since our focus is on understanding and addressing the impact of class heterogeneity
in clients data on the performance of trained models, we set equal the size of clients’ datasets. Fur-
thermore, to evaluate both personalized as well as global model performance, each client is allocated
a local test dataset (with the same class distribution as the corresponding local training dataset) and a
global test dataset with uniformly distributed classes (shared by all participating clients); this allows
computing both the average local test accuracy of the trained local models as well as the global test
accuracy of the global model aggregated from the clients’ local models.

Models. Rather than evaluate the performance of competing schemes on a simple CNN network
as in (McMahan et al., 2017; Li et al., 2020; 2021a), we apply two widely used benchmarking
models better suited to practical settings. Specifically, we deploy ShuffleNetV2 (Ma et al., 2018) on
SVHN and ResNet18 (He et al., 2016) on CIFAR10/100. As our results show, FedHKD generally
outperforms competing methods on both (very different) architectures, demonstrating remarkable
consistency and robustness.

Baselines. We compare the test accuracy of FedHKD with seven state-of-the-art federated learning
methods including FedAvg (McMahan et al., 2017), FedMD (Li & Wang, 2019), FedProx (Li et al.,
2020), Moon (Li et al., 2021a), FedProto (Tan et al., 2021), FedGen (Zhu et al., 2021) and FedAlign
(Mendieta et al., 2022). We emphasize that the novelty of FedHKD lies in data-free knowledge
distillation that requires neither a public dataset nor a generative model; this stands in contrast
to FedMD which relies on a public dataset and FedGen which deploys a generative model. Like
FedHKD, FedProto shares means of data representations but uses different regularization terms in
the loss functions and does not make use of soft predictions. When discussing the results, we
will particularly analyze and compare the performance of FedMD, FedGen and FedProto with the
performance of FedHKD.

4.2 PERFORMANCE ANALYSIS

Table 1 shows that FedHKD generally outperforms other methods across various settings and
datasets. For each dataset, we ran experiments with 10, 20 and 50 clients, with local data gener-
ated from a Dirichlet distribution with fixed concentration parameter β = 0.5. As previously stated,
we focus on the heterogeneity in class distribution of local dataset rather than the heterogeneity in
the number of samples. To this end, an increasing fraction of data is partitioned and allocated to the
clients in the experiments, maintaining the size of local datasets as the number of clients increases. A
single client’s averaged training time per global round is computed across different settings to char-
acterize the required training time. To provide a more informative comparison with FedProto (Tan

7

Published as a conference paper at ICLR 2023

Table 1: Results on data partitions generated from Dirichlet distribution with the concentration
parameter β = 0.5. The number of clients is 10, 20 and 50; the clients utilize 10%, 20% and 50%
of the datasets. The number of parameters (in millions) indicates the size of the model stored in the
memory during training. A single client’s averaged wall-clock time per round is measured across 8
AMD Vega20 GPUs in a parallel manner.

Dataset Scheme Local Acc Global Acc Params (M) Time (s) Pub Data
Clients 10 20 50 10 20 50

SVHN

FedAvg 0.6766 0.7329 0.6544 0.4948 0.6364 0.5658 1.286 5.22 No
FedProx 0.6927 0.6717 0.6991 0.5191 0.6419 0.6139 2.572 5.56 No
Moon 0.6602 0.7085 0.7192 0.4883 0.5536 0.6543 3.858 12.32 No

FedAlign 0.7675 0.7920 0.7656 0.6426 0.7138 0.7437 1.286 16.67 No
FedGen 0.5788 0.5658 0.4679 0.3622 0.3421 0.3034 1.357 6.66 No
FedMD 0.8038 0.8086 0.7912 0.6812 0.7344 0.8085 1.286 10.67 Yes

FedProto 0.8071 0.8148 0.8039 0.6064 0.6259 0.7895 1.286 5.42 No
FedHKD* 0.8064 0.8157 0.8072 0.6405 0.6884 0.7921 1.286 5.70 No
FedHKD 0.8086 0.8381 0.7891 0.6781 0.7357 0.7891 1.286 6.33 No

CIFAR10

FedAvg 0.5950 0.6261 0.5825 0.4741 0.5516 0.3773 11.209 8.71 No
FedProx 0.5981 0.6295 0.6490 0.4793 0.5258 0.5348 22.418 10.25 No
Moon 0.5901 0.6482 0.5513 0.4579 0.5651 0.3514 33.627 20.52 No

FedAlign 0.5948 0.6023 0.6402 0.4976 0.5134 0.5641 11.209 36.24 No
FedGen 0.5879 0.6395 0.6533 0.4800 0.5408 0.5651 11.281 10.52 No
FedMD 0.6147 0.6666 0.6533 0.5088 0.5575 0.5714 11.209 22.51 Yes

FedProto 0.6131 0.6505 0.5939 0.5012 0.5548 0.4016 11.209 11.68 No
FedHKD* 0.6227 0.6515 0.6675 0.5049 0.5596 0.5074 11.209 11.26 No
FedHKD 0.6254 0.6816 0.6671 0.5213 0.5735 0.5493 11.209 12.83 No

CIFAR100

FedAvg 0.2361 0.2625 0.2658 0.2131 0.2748 0.2907 11.215 14.17 No
FedProx 0.2332 0.2814 0.2955 0.2267 0.2708 0.2898 22.430 19.81 No
Moon 0.2353 0.2729 0.2428 0.2141 0.2652 0.1928 33.645 36.28 No

FedAlign 0.2467 0.2617 0.2854 0.2281 0.2729 0.2933 11.215 27.61 No
FedGen 0.2393 0.2701 0.2739 0.2176 0.262 0.2739 11.333 17.45 No
FedMD 0.2681 0.3054 0.3293 0.2323 0.2669 0.2968 11.215 29.04 Yes

FedProto 0.2568 0.3188 0.3170 0.2121 0.2756 0.2805 11.215 14.88 No
FedHKD* 0.2551 0.2997 0.3016 0.2286 0.2715 0.2976 11.215 14.59 No
FedHKD 0.2981 0.3245 0.3375 0.2369 0.2795 0.2988 11.215 15.14 No

Table 2: Results on data partitions generated with different concentration parameters (10 clients).

Scheme Local Acc Global Acc Local Acc Global Acc
CIFAR10 SVHN

β = 0.2 β = 5 β = 0.2 β = 5 β = 0.2 β = 5 β = 0.2 β = 5
FedAvg 0.5917 0.4679 0.3251 0.5483 0.6227 0.5833 0.2581 0.6238
FedProx 0.6268 0.4731 0.3845 0.5521 0.7481 0.6598 0.4323 0.7121
Moon 0.5762 0.3794 0.3229 0.4256 0.7440 0.6568 0.3764 0.7128

FedAlign 0.6434 0.4799 0.4446 0.5526 0.8161 0.7414 0.5904 0.7919
FedGen 0.6212 0.4432 0.4623 0.4432 0.7248 0.6542 0.5304 0.7251
FedMD 0.6532 0.494 0.4408 0.5543 0.8415 0.7580 0.6181 0.8144

FedProto 0.6471 0.4802 0.3887 0.5488 0.8446 0.7363 0.5493 0.8055
FedHKD* 0.6798 0.4857 0.4459 0.5494 0.8344 0.7314 0.5357 0.8044
FedHKD 0.6789 0.4976 0.4736 0.5573 0.8462 0.7420 0.6241 0.8083

et al., 2021), we ran two setting of our proposed method, labeled as FedHKD and FedHKD*: (1)
FedHKD deploys the second and third term in Eq. 11 using λ = 0.05 and γ = 0.05; (2) FedHKD*
excludes the constraint on Feature Extractor Rφ by setting λ = 0.05 and γ = 0.

Accuracy comparison. The proposed method, FedHKD, generally ranks as either the best or the
second best in terms of both local and global accuracy, competing with FedMD without using public
data. On SVHN, FedHKD significantly improves the local test accuracy over FedAvg (by 19.5%,
14.3% and 20.6%) as well as the global test accuracy (by 37.0%, 15.6% and 39.5%) in experiments
involving 10, 20 and 50 clients, respectively. The improvement over FedAvg carry over to the exper-
iments on CIFAR10, with 5.1%, 8.9% and 14.5% increase in local accuracy and 14.5%, 9.9% and
45.6% increase in global accuracy in the experiments involving 10, 20 and 50 clients, respectively.
On CIFAR100, the improvement of global accuracy is somewhat more modest, but the improvement
in local accuracy is still remarkable, outperforming FedAvg by 26.3%, 23.6% and 26.9% in the ex-
periments involving 10, 20 and 50 clients, respectively. The local test accuracies of FedHKD* and
FedProto are comparable, but FedHKD* outperforms FedProto in terms of global test accuracy (as
expected, following the discussion in Section 3.2). FedAlign outperforms the other two regulariza-
tion methods, FedProx and Moon, both locally and globally; however, but is not competitive with
the other methods in which clients’ local training is assisted by additional information provided
by the server. While it has been reported that FedGen performs well on simpler datasets such as
MNIST (LeCun et al., 1998) and EMNIST (Cohen et al., 2017), it appears that its MLP-based gen-

8

Published as a conference paper at ICLR 2023

erative model is unable to synthesize data of sufficient quality to assist in KD-based FL on SVHN
and CIFAR10/100 – on the former dataset, FedGen actually leads to performance deterioration as
compared to FedAvg.

Training time comparison. We compare training efficiency of different methods in terms of the
averaged training time (in second) per round/client. For fairness, all the experiments were con-
ducted on the same machine with 8 AMD Vega20 GPUs. As shown in Table 1, the training time
of FedHKD, FedHKD*, FedProto and FedGen is slightly higher than the training time of FedAvg.
The additional computational burden of FedHKD is due to evaluating two extra regularization terms
and calculating local hyper-knowledge. The extra computations of FedGen are primarily due to
training a generative model; the MLP-based generator leads to minor additional computations but
clearly limits the performance of FedGen. FedMD relies on a public dataset of the same size as the
clients’ local datasets, thus approximately doubling the time FedAvg needs to complete the forward
and backward pass during training. Finally, the training efficiency of Moon and FedAlign is inferior
to the training efficiency of other methods. Moon is inefficient as it requires more than double the
training time of FedAvg. FedAlign needs to pass forward the network multiple times and runs large
matrix multiplications to estimate second-order information (Hessian matrix).

Effect of class heterogeneity. We compare the performance of the proposed method, FedHKD, and
other techniques as the data heterogeneity is varied by tuning the parameter β. When β = 0.2, the
heterogeneity is severe and the local datasets typically contain only one or two classes; when β = 5,
the local datasets are nearly homogeneous. Data distributions are visualized in Appendix A.2. As
shown in Table 2, FedHKD improves both local and global accuracy in all settings, surpassing other
methods except FedMD on SVHN dataset for β = 5. FedProto exhibits remarkable improvement
on local accuracy with either extremely heterogeneous (β = 0.2) or homogeneous (β = 5) local
data but its global performance deteriorates when β = 0.2.

4.3 PRIVACY ANALYSIS

In our experimental setting, clients share the same network architecture (either ShuffleNetV2 or
ResNet18). In both network architectures, the outermost layer in the feature extractor is a batch
normalization (BN) layer (Ioffe & Szegedy, 2015). For a batch of vectors B = {v1, . . . , vb} at the
input of the BN layer, the operation of the BN layer is specified by

µB =
1

b

b∑
i=1

vi, σ
2
B =

1

b

b∑
i=1

(vi − µB)2, ṽi ←−
vi − µB
σB

. (15)

Assuming b is sufficiently large, the law of large numbers implies ṽi ∼ N (0, 1). Therefore, −3 ≤
vi ≤ 3 with probability 99.73% (almost surely). Consider the experimental scenarios where client
i contains Ni = 1024 samples in its local dataset, the sharing threshold is ν = 0.25, N j

i > νNi =
256, δ = 0.01, and ε = 0.5. According to Theorem 1, to obtain 0.5-differential privacy with

confidence 1 − δ = 99% we set σ >
√

2 log 5
4δ/ε ≈ 6.215. According to Lemma 1, (Sif)2 =(

2ζ

Nj
i

)2
< (6

256)2. Setting σ = 7 (large privacy budget), the variance of noise added to the hyper-

knowledge Kji of client i should be (Sif)2σ2 < 0.0269.

5 CONCLUSION

We presented FedHKD, a novel FL algorithm that relies on knowledge distillation to enable effi-
cient learning of personalized and global models in data heterogeneous settings; FedHKD requires
neither a public dataset nor a generative model and therefore addresses the data heterogeneity chal-
lenge without a need for significantly higher resources. By introducing and utilizing the concept
of “hyper-knowledge”, information that consists of the means of data representations and the cor-
responding means of soft predictions, FedHKD enables clients to train personalized models that
perform well locally while allowing the server to aggregate a global model that performs well across
all data classes. To address privacy concerns, FedHKD deploys a differential privacy mechanism.
We conducted extensive experiments in a variety of setting on several benchmark datasets, and pro-
vided a theoretical analysis of the convergence of FedHKD. The experimental results demonstrate
that FedHKD outperforms state-of-the-art federated learning schemes in terms of both local and
global accuracy while only slightly increasing the training time.

9

Published as a conference paper at ICLR 2023

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv preprint
arXiv:2111.04263, 2021.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Hongyan Chang, Virat Shejwalkar, Reza Shokri, and Amir Houmansadr. Cronus: Robust
and heterogeneous collaborative learning with black-box knowledge transfer. arXiv preprint
arXiv:1912.11279, 2019.

Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning for
image classification. In International Conference on Learning Representations, 2021.

Huancheng Chen and Haris Vikalo. Federated learning in non-iid settings aided by differentially
private synthetic data. arXiv preprint arXiv:2206.00686, 2022.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp.
2921–2926. IEEE, 2017.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared repre-
sentations for personalized federated learning. In International Conference on Machine Learning,
pp. 2089–2099. PMLR, 2021.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Cynthia Dwork. Differential privacy: A survey of results. In International conference on theory and
applications of models of computation, pp. 1–19. Springer, 2008.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Annual international conference on the
theory and applications of cryptographic techniques, pp. 486–503. Springer, 2006a.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006b.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with the-
oretical guarantees: A model-agnostic meta-learning approach. Advances in Neural Information
Processing Systems, 33:3557–3568, 2020.

Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557, 2017.

Xuan Gong, Abhishek Sharma, Srikrishna Karanam, Ziyan Wu, Terrence Chen, David Doermann,
and Arun Innanje. Ensemble attention distillation for privacy-preserving federated learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15076–15086,
2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

Filip Hanzely, Slavomı́r Hanzely, Samuel Horváth, and Peter Richtárik. Lower bounds and opti-
mal algorithms for personalized federated learning. Advances in Neural Information Processing
Systems, 33:2304–2315, 2020.

10

Published as a conference paper at ICLR 2023

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

Nghia Hoang, Thanh Lam, Bryan Kian Hsiang Low, and Patrick Jaillet. Learning task-agnostic em-
bedding of multiple black-box experts for multi-task model fusion. In International Conference
on Machine Learning, pp. 4282–4292. PMLR, 2020.

Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong Zhang.
Personalized cross-silo federated learning on non-iid data. In AAAI, pp. 7865–7873, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Sohei Itahara, Takayuki Nishio, Yusuke Koda, Masahiro Morikura, and Koji Yamamoto.
Distillation-based semi-supervised federated learning for communication-efficient collaborative
training with non-iid private data. arXiv preprint arXiv:2008.06180, 2020.

E Jeong, S Oh, H Kim, J Park, M Bennis, and SL Kim. Federated distillation and augmentation
under non-iid private data. NIPS Wksp. MLPCD, 2018a.

Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Communication-efficient on-device machine learning: Federated distillation and augmentation
under non-iid private data. arXiv preprint arXiv:1811.11479, 2018b.

Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning per-
sonalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
Kalantidis. Decoupling representation and classifier for long-tailed recognition. arXiv preprint
arXiv:1910.09217, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
N/A, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model distillation. arXiv
preprint arXiv:1910.03581, 2019.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722,
2021a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems, 2:429–450, 2020.

11

Published as a conference paper at ICLR 2023

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International Conference on Machine Learning, pp. 6357–
6368. PMLR, 2021b.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363,
2020.

Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. Feddg: Federated domain gen-
eralization on medical image segmentation via episodic learning in continuous frequency space.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1013–1023, 2021.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision
(ECCV), pp. 116–131, 2018.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, Zhengming Ding, and Chen Chen.
Local learning matters: Rethinking data heterogeneity in federated learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8397–8406, 2022.

Umberto Michieli and Mete Ozay. Prototype guided federated learning of visual feature representa-
tions. arXiv preprint arXiv:2105.08982, 2021.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. N/A, 2011.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Mónica Ribero, Jette Henderson, Sinead Williamson, and Haris Vikalo. Federating recommenda-
tions using differentially private prototypes. Pattern Recognition, 129:108746, 2022.

Johannes Schneider and Michalis Vlachos. Personalization of deep learning. In Data Science–
Analytics and Applications, pp. 89–96. Springer, 2021.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In International Conference on Machine Learning, pp. 9489–9502. PMLR, 2021.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. Advances in neural information processing systems, 30, 2017.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen. Soteria: Provable de-
fense against privacy leakage in federated learning from representation perspective. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9311–9319,
2021.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau en-
velopes. Advances in Neural Information Processing Systems, 33:21394–21405, 2020.

12

Published as a conference paper at ICLR 2023

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, 2022.

Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi
Zhang. Fedproto: Federated prototype learning over heterogeneous devices. arXiv preprint
arXiv:2105.00243, 2021.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020a.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020b.

Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays, and Daniel
Ramage. Federated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252,
2019.

Taojiannan Yang, Sijie Zhu, and Chen Chen. Gradaug: A new regularization method for deep neural
networks. Advances in Neural Information Processing Systems, 33:14207–14218, 2020.

Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang. Fedmix: Approximation of mixup
under mean augmented federated learning. arXiv preprint arXiv:2107.00233, 2021.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Interna-
tional Conference on Machine Learning, pp. 7252–7261. PMLR, 2019.

Edvin Listo Zec, John Martinsson, Olof Mogren, Leon René Sütfeld, and Daniel Gillblad. Federated
learning using mixture of experts. arXiv preprint arXiv, 2020.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. Parameterized
knowledge transfer for personalized federated learning. Advances in Neural Information Process-
ing Systems, 34:10092–10104, 2021.

Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. Fine-tuning global model via
data-free knowledge distillation for non-iid federated learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10174–10183, 2022.

Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized feder-
ated learning with first order model optimization. arXiv preprint arXiv:2012.08565, 2020.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International Conference on Machine Learning, pp. 12878–12889. PMLR,
2021.

13

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 EXPERIMENTAL DETAILS

General setting. We implemented all the models and ran the experiments in Pytorch (Paszke et al.,
2019) (Ubuntu 18.04 operating system, 8 AMD Vega20 GPUs). Adam (Kingma & Ba, 2014) opti-
mizer was used for model training in all the experiments; learning rate was initialized to 0.001 and
decreased every 10 iterations with a decay factor 0.5, while the hyper-parameter γ in Adam was set
to 0.5. The number of global communication rounds was set to 50 while the number of local epochs
was set to 5. The size of a data batch was set to 64 and the participating rate of clients was for sim-
plicity set to 1. For SVHN (Netzer et al., 2011) dataset, the latent dimension of data representation
was set to 32; for CIFAR10/100 (Krizhevsky et al., 2009), the latent dimension was set to 64.

Hyper-parameters. In all experiments, the FedProx (Li et al., 2020) hyper-parameter µprox was set
to 0.5; the Moon (Li et al., 2021a) hyper-parameter µmoon in the proximTal term was set to 1. In
FedAlign (Mendieta et al., 2022), the fractional width of the sub-network was set to 0.25, and the
balancing parameter µalign was set to 0.45. The generative model required by FedGen (Zhu et al.,
2021) is the MLP-based architecture proposed in (Zhu et al., 2021). The hidden dimension of the
generator was set to 512; the latent dimension, noise dimension, and input/output channels were
adapted to the datasets. The number of epochs for training the generative model in each global
round was set to 5, and the ratio of the generating batch-size and the training batch-size was set to
0.5 (i.e, the generating batch-size was set to 32). Parameters αgenerative and βgenerative were initialized
to 10 with a decay factor 0.98 in each global round. In FedMD (Li & Wang, 2019), we set the
regularization hyper-parameter λmd to 0.05; the size of the public dataset was set equal to the size of
the clients’ local training dataset. In FedProto (Tan et al., 2021), the regularization hyper-parameter
λproto was set to 0.05. The hyper-parameters λ and γ in our proposed method FedHKD* were set
to 0.05 and 0, respectively; as for FedHKD, the two hyper-parameters λ and γ were set to 0.05 and
0.05, respectively. Variance σ of the Gaussian noise added to the generated hyper-knowledge was
set to 7; threshold ν that needs to be met to initiate computation of hyper-knowledge was set to 0.25.
Temperature for FedHKD and Moon algorithm was set to 0.5.

A.2 DATA PARTITIONING

For convenience, we used datasets encapsulated by Torchvision To obtain the global test dataset, we
directly load SVHN, CIFAR10 and CIFAR100 test set in Torchvision without any sampling. For
the local training and test sets, we first utilized Dirichlet distribution to sample m partitions as m
local datasets from the encapsulated set (m denotes the number of clients). Then we divided the
local dataset into a training and test set in 75%/25% proportion. Figures 1, 2 and 3 visualize the
class distribution of local clients by showing the number of samples belonging to different classes
at each client (colors distinguish the magnitude – the darker the color, the more samples are in the
corresponding class).

(a) β = 0.2 (b) β = 0.5 (c) β = 5

Figure 1: 10% of the training set points in CIFAR10 are sampled into 10 partitions according to
a Dirichlet distribution (10 clients). As the concentration parameter varies (β = 0.2, 0.5, 5), the
partitions change from heterogeneous to homogeneous.

14

https://pytorch.org/vision/stable/index.html

Published as a conference paper at ICLR 2023

Figure 2: 50% of the training set points in CIFAR10 are sampled into 10 partitions according to a
Dirichlet distribution (50 clients). With concentration parameter β = 0.2, the partition is extremely
heterogeneous.

Figure 3: 50% of the training set points in CIFAR100 are sampled into 10 partitions according to
a Dirichlet distribution (50 clients). With concentration parameter β = 5, the partition is relatively
homogeneous.

15

Published as a conference paper at ICLR 2023

A.3 FLOW DIAGRAM ILLUSTRATING COMPUTATION OF HYPER-KNOWLEDGE

Figure 4 illustrates computation of local hyper-knowledge by a client. At the end of local training,
each participating client obtains a fine-tuned local model consisting of a feature extractor Rφ(·) and
a classifierGω(·). There are three steps in the process of obtaining local hyper-knowledge for class j
of client k: (1) Representations of data samples in class j, generated by the feature extractor, are used
to compute the mean of data representations for that class; (2) A classifier generates soft predictions
for the obtained data representations, thus enabling computation of the mean of soft predictions for
class j; (3) After adding Gaussian noise to the mean of data representations, the noisy mean of data
representations and mean of soft predictions are packaged into local hyper-knowledge for class j.

Figure 4: A flow diagram showing computation, encryption and aggregation of hyper-knowledge.

16

Published as a conference paper at ICLR 2023

A.4 DETAILS OF THE FEDHKD ALGORITHM

Figure. 5 illustrates the iterative training procedure of FedHKD. At the start of training, global
hyper-knowledge is initialized to an empty set and thus in round 1 each client trains its local model
without global hyper-knowledge. Following local training, each client extracts representations from
local data samples via a feature extractor and finds soft predictions via a classifier, computing local
hyper-knowledge as shown in Figure. 4. The server collects local hyper-knowledge and model
updates from clients, aggregates them into global hyper-knowledge and model, and then sends the
results back to the clients. From this point on, clients perform local training aided by the global
knowledge. Alternating local training and aggregation lasts for T − 1 rounds where T denotes the
number of global epochs.

Figure 5: A flow diagram showing FedHKD steps. The blue dashed line indicates sending local
hyper-knowledge and model updates from clients to the server while the green dashed line indicates
broadcasting global hyper-knowledge and model from the server to clients.

17

Published as a conference paper at ICLR 2023

A.5 PROOF OF LEMMA 1

To compute ith client’s mean of class j representation, h̄ji , we consider the deterministic function

(averaging in an element-wise manner) fl(d
j
i) , h̄ji (l) = 1

Nj
i

∑Nj
i

k=1 h̄
j,k
i (l) where dji is the subset

of the ith client’s local dataset collecting samples with label j; hj,ki denotes the data representation
of the kth sample in dji while hj,ki (l) is the lth element of hj,ki .

Lemma 1. If |hj,ki (l)| is bounded by ζ > 0 for any k, then

|fl(dji)− fl(d
j′
i)| ≤ 2ζ

N j
i

. (16)

Proof: Without a loss of generality, specify

e = {h1i (l), . . . , h
Nj

i−1
i (l), h

Nj
i

i (l)}, |e| = N j
i , (17)

and
e′ = {h1i (l), . . . , h

Nj
i−1

i (l)}, |e′| = N j
i − 1, (18)

where e and e′ denote adjacent sets differing in at most one element. Define 1 = {1, . . . , 1} with
|1| = N j

i − 1. Then

|fl(dji)− f(dj
′

i)| =

∣∣∣∣∣∣1
Te′ + h

Nj
i

i (l)

N j
i

− 1Te′

N j
i − 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(
N j
i − 1

)
h
Nj

i
i (l)− 1Te′

N j
i

(
N j
i − 1

)
∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
(
N j
i − 1

)
h
Nj

i
i (l)

N j
i

(
N j
i − 1

)
∣∣∣∣∣∣∣+

∣∣∣∣∣∣ 1Te′

N j
i

(
N j
i − 1

)
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
(
N j
i − 1

)
ζ

N j
i

(
N j
i − 1

)
∣∣∣∣∣∣+

∣∣∣∣∣∣
(
N j
i − 1

)
ζ

N j
i

(
N j
i − 1

)
∣∣∣∣∣∣

=
ζ

N j
i

+
ζ

N j
i

=
2ζ

N j
i

.

(19)

18

Published as a conference paper at ICLR 2023

A.6 CONVERGENCE ANALYSIS OF FEDHKD

It will be helpful to recall the notation before restating the theorems and providing their proofs.
Let Rφi

(·) : Rdx → Rdr denote the feature extractor function of client i, mapping the raw data
of dimension dx into the representation space of dimension dr. Let Gωi

(·) : Rdr → Rn denote
the classifier’s function of client i, projecting the data representation into the categorical space of
dimension n. Let Fθi=(φi,ωi)(·) = Gωi

(·) ◦ Rφi
(·) denote the mapping of the entire model. The

local objective function of client i is formed as

L(Di,φi,ωi) =
1

Bi

Bi∑
k=1

CELoss(Gωi(Rφi(xk)), yk)

+ λ
1

n

n∑
j=1

‖Q(Gωi(Hj), T)−Qj‖2 + γ
1

Bi

Bi∑
k=1

‖Rφi(xk)−Hyk‖2,

(20)

where Di denotes the local dataset of client i; input xk and label yk are drawn from Di; Bi is
the number of samples in a batch of Di; Q(·, T) is the soft target function with temperature T ;
Hj denotes the global mean data representation of class j; Qyk is the corresponding global soft
prediction of class yk; and λ and γ are the hyper-parameters. Note that only φi and ωi are variables
in the loss function while the other terms are constant.

Let t denote the current global training round. During any global round, there are E local training
epochs. Assume the loss function is minimized by relying on stochastic gradient descent (SGD). To
compare the loss before and after model/hyper-knowledge aggregation at the server, denote the local
epoch by e ∈ { 12 , 1, . . . , E}; e = 1

2 indicates the epoch between the end of the server’s aggregation
in the previous communication round and the first epoch of the local training in the next round.
After E epochs of local training in communication round t, the local model of client i is denoted
as (φE,ti ,ωE,ti). At the global communication round t + 1, client i initializes the local model with

the aggregated global model, (φ
1
2 ,t+1
i ,ω

1
2 ,t+1
i). Although client i does not begin the next training

epoch, the local model is changed and so is the output of the loss function. At the server, the global
model is updated as

θ
1
2 ,t+1 =

m∑
i=1

piθ
E,t
i , (21)

where θE,ti is the local model of client i after E local training epoches at round t; pi is the averaging
weight of client i, where

∑m
i=1 pi = 1. h̃j,t and q̄j,t are aggregated as

Hj,t+1 =

m∑
i=1

pih̃
j,t, (22)

Qj,t+1 =

m∑
i=1

piq̄
i,t. (23)

A.6.1 ASSUMPTIONS

Assumption 1. (Lipschitz Continuity). The gradient of the local loss function L(·) is L1-Lipschitz
continuous, the embedding functions of the local feature extractorRφ (·) isL2-Lipschitz continuous,
and the embedding functions of the local classifier Gω (·) composition with soft prediction function
Q(·, T) is L3-Lipschitz continuous,∥∥∇L(θt1)−∇L(θt2)

∥∥
2
≤ L1

∥∥θt1 − θt2∥∥
2
,∀t1, t2 > 0, (24)∥∥Rφt1 (·)−Rφt2 (·)

∥∥ ≤ L2

∥∥φt1 − φt2∥∥
2
, ∀t1, t2 > 0, (25)

‖Q (Gωt1 (·))−Q (Gωt2 (·))‖ ≤ L3

∥∥ωt1 − ωt2∥∥
2
, ∀t1, t2 > 0. (26)

Inequality 24 also implies

L(θt1)− L(θt2) ≤
〈
∇L(θt2),θt1 − θt2

〉
+
L1

2

∥∥θt1 − θt2∥∥2
2
, ∀t1, t2 > 0. (27)

19

Published as a conference paper at ICLR 2023

Assumption 2. (Unbiased Gradient and Bounded Variance). The stochastic gradients on a batch of
client i’s data ξi, denoted by gti = ∇L (θti , ξ

t
i), is an unbiased estimator of the local gradient for

each client i,

Eξi∼Di

[
gti
]

= ∇L
(
θti
)
∀i ∈ 1, 2, . . . ,m, (28)

with the variance bounded by σ2,

E
[∥∥gti −∇L (θti)∥∥22] ≤ σ2, ∀i ∈ {1, 2, . . . ,m}, σ > 0. (29)

Assumption 3. (Bounded Expectation of Gradients). The expectation of the stochastic gradient is
bounded by V ,

E
[∥∥gti∥∥22] ≤ V 2, ∀i ∈ {1, 2, . . . ,m}, V > 0. (30)

A.6.2 LEMMAS

Lemma 2. Instate Assumptions 1-3. The loss function afterE local training epoches at global round
t+ 1 can be bounded as

E
[
LE,t+1

] (1)

≤ L 1
2 ,t+1 −

E−1∑
e= 1

2

(
ηe −

η2eL1

2

)∥∥∇Le,t+1
∥∥2
2

+
η20L1E

2
σ2, (31)

where ηe is the step-size (learning rate) at local epoch e.

Proof:

Le+1,t+1
(1)

≤ Le,t+1 +
〈
∇Le,t+1,θe+1,t+1 − θe,t+1

〉
+
L1

2

∥∥θe+1,t+1 − θe,t+1
∥∥2
2

= Le,t+1 − ηe
〈
∇Le,t+1, ge,t+1

〉
+
L1

2
η2e
∥∥ge,t+1

∥∥2
2
, e ∈ {1

2
, 1, . . . , E − 1},

(32)

where inequality (1) follows from Assumption 1. Taking expectation of both sides (the sampling
batch ξt+1), we obtain

E
[
Le+1,t+1

] (2)

≤ Le,t+1 − ηe
∥∥∇Le,t+1

∥∥2
2

+
L1

2
η2eE

[∥∥ge,t+1
∥∥2
2

]
(3)
= Le,t+1 − ηe

∥∥∇Le,t+1
∥∥2
2

+
L1

2
η2e

(∥∥∇Le,t+1
∥∥2
2

+ V
[
ge,t+1

])
(4)

≤ Le,t+1 −
(
ηe −

η2eL1

2

)∥∥∇Le,t+1
∥∥2
2

+
L1

2
η2eσ

2.

(33)

Inequality (2) follows from Assumption 2; (3) follows from V [x] = E
[
x2
]
− E [x]

2, where x is a
random variable; (4) holds due to Assumptions 2-3. Let us set the learning step at the start of local
training to η 1

2
= η0. By telescoping,

E
[
LE,t+1

]
≤ L 1

2 ,t+1 −
E−1∑
e= 1

2

(
ηe −

η2eL1

2

)∥∥∇Le,t+1
∥∥2
2

+
η20σ

2L1E

2
. (34)

The above inequality holds due to the fact that the learning rate η is non-increasing.

Lemma 2. Following the model and hyper-knowledge aggregation at the server, the loss function of
any client i at global round t+ 1 can be bounded as

E
[
L

1
2 ,(t+1)
i

]
≤ LE,ti +

η20L1

2
E2V 2 + 2λη0L3 (L2 + 1)EV + 2γη0L2EV. (35)

20

Published as a conference paper at ICLR 2023

Proof:

L
1
2 ,(t+1)
i − LE,ti = L(θ

1
2 ,t+1
i ,Kt+1)− L(θE,ti ,Kt)

= L(θ
1
2 ,t+1
i ,Kt+1)− L(θE,ti ,Kt+1) + L(θE,ti ,Kt+1)− L(θE,ti ,Kt)

(1)

≤
〈
∇LE,ti ,θ

1
2 ,t+1
i − θE,ti

〉
+
L1

2

∥∥∥θ 1
2 ,t+1
i − θE,ti

∥∥∥2
2

+ L(θE,ti ,Kt+1)− L(θE,ti ,Kt)

(2)
=

〈
∇LE,ti ,

m∑
j=1

pjθ
E,t
j − θE,ti

〉
+
L1

2

∥∥∥∥∥∥
m∑
j=1

pjθ
E,t
j − θ

1
2 ,t
i

∥∥∥∥∥∥
2

2

+ L(θE,ti ,Kt+1)− L(θE,ti ,Kt),

(36)

where inequality (1) follows from Assumption 1, and (2) is derived from Eq. 21. Taking expectation
of both side,

E
[
L

1
2 ,(t+1)
i

]
− LE,ti

(1)

≤ L1

2
E

∥∥∥∥∥∥
m∑
j=1

pjθ
E,t
j − θE,ti

∥∥∥∥∥∥
2

2

+ EL(θE,ti ,Kt+1)− EL(θE,ti ,Kt)

=
L1

2
E

∥∥∥∥∥∥
m∑
j=1

pjθ
E,t
j − θ

1
2 ,t
i −

(
θE,ti − θ

1
2 ,t
i

)∥∥∥∥∥∥
2

2

+ EL(θE,t,Kt+1)− EL(θE,t,Kt)
(2)

≤ L1

2
E
∥∥∥θE,ti − θ

1
2 ,t
i

∥∥∥2
2

+ EL(θE,t,Kt+1)− EL(θE,t,Kt)

=
L1

2
E

∥∥∥∥∥∥
E−1∑
e= 1

2

ηeg
e,t
i

∥∥∥∥∥∥
2

2

+ EL(θE,t,Kt+1)− EL(θE,t,Kt)

(3)

≤ L1

2
E
E−1∑
e= 1

2

Eη2e
∥∥ge,ti ∥∥22 + EL(θE,t,Kt+1)− EL(θE,t,Kt)

(4)

≤
η21

2

L1

2
E
E−1∑
e= 1

2

E
∥∥ge,ti ∥∥22 + EL(θE,t,Kt+1)− EL(θE,t,Kt)

(5)

≤ η20L1

2
E2V 2 + EL(θE,t,Kt+1)− EL(θE,t,Kt).

(37)

Due to Lemma 3 and the proof of Lemma 3 in (Li et al., 2019), inequality (1) holds as E
[
θE,tj

]
=∑m

j=1 pjθ
E,t
j ; inequality (2) holds because E ‖EX −X‖2 ≤ E ‖X‖2, where X = θE,ti − θ

1
2 ,t
i ;

inequality (3) is due to Jensen inequality; inequality (4) follows from that fact that the learning
rate ηe is non-increasing; inequality (5) holds due to Assumption 3. Let us consider the term
L(θE,t,Kt+1) − L(θE,t,Kt); note that the model parameters θE,t are unchanged and thus the
first term in the loss function 20 can be neglected. The difference between the two loss functions is

21

Published as a conference paper at ICLR 2023

due to different global hyper-knowledge Kt and Kt+1, L(θE,t,Kt+1)− L(θE,t,Kt) =

= λ
1

n

n∑
j=1

(∥∥∥Q(GωE,t
j

(Hj,t+1)
)
−Qj,t+1

∥∥∥
2
−
∥∥∥Q(GωE,t

j
(Hj,t)

)
−Qj,t

∥∥∥
2

)

+ γ
1

Bi

Bi∑
k=1

(∥∥∥RωE,t
i

(xk)−Hyk,t+1
∥∥∥
2
−
∥∥∥RωE,t

i
(xk)−Hyk,t

∥∥∥
2

)
= λ

1

n

n∑
j=1

(∥∥∥Q(GωE,t
j

(Hj,t+1)
)
−Qj,t +Qj,t −Qj,t+1

∥∥∥
2
−
∥∥∥Q(GωE,t

j
(Hj,t)

)
−Qj,t

∥∥∥
2

)

+ γ
1

Bi

Bi∑
k=1

(∥∥∥RωE,t
i

(xk)−Hyk,t+1
∥∥∥
2
−
∥∥∥RωE,t

i
(xk)−Hyk,t

∥∥∥
2

)
(1)

≤ λ
1

n

n∑
j=1

(∥∥∥Q(GωE,t
j

(Hj,t+1)
)
−Q

(
GωE,t

j
(Hj,t)

)∥∥∥
2

+
∥∥Qj,t+1 −Qj,t

∥∥
2

)

+ γ
1

Bi

Bi∑
k=1

(∥∥Hyk,t+1 −Hyk,t
∥∥
2

)
(2)

≤ λ
1

n

n∑
j=1

(
L3

∥∥Hj,t+1 −Hj,t
∥∥
2

+
∥∥Qj,t+1 −Qj,t

∥∥
2

)
+ γ

1

Bi

Bi∑
k=1

(∥∥Hyk,t+1 −Hyk,t
∥∥
2

)
,

(38)
where (1) is due to the triangle inequality, ‖a+ b+ c‖2 ≤ ‖a‖2 + ‖b‖2 + ‖c‖2 with a =

Q
(
GωE,t

j
(Hj,t)

)
− Qj,t, b = Q

(
GωE,t

j
(Hj,t+1)

)
− Q

(
GωE,t

j
(Hj,t)

)
and c = Qj,t − Qj,t+1;

inequality (2) holds due to Assumption 1. Then, let us consider the following difference:

∥∥Hj,t+1 −Hj,t
∥∥
2

=

∥∥∥∥∥
m∑
i=1

pih̄
j,t
i −

m∑
i=1

pih̄
j,t−1
i

∥∥∥∥∥
2

=

∥∥∥∥∥
m∑
i=1

pi

(
h̄j,ti − h̄

j,t−1
i

)∥∥∥∥∥
2

=

∥∥∥∥∥∥
m∑
i=1

pi

 1

N j
i

Nj
i∑

k=1

RφE,t
i

(xk)−RφE,t−1
i

(xk)

∥∥∥∥∥∥
2

(1)

≤
m∑
i=1

pi
1

N j
i

Nj
i∑

k=1

∥∥∥RφE,t
i

(xk)−RφE,t−1
i

(xk)
∥∥∥
2

(2)

≤
m∑
i=1

pi
1

N j
i

Ni∑
k=1

L2

∥∥∥φE,ti − φE,t−1i

∥∥∥
2

= L2

m∑
i=1

pi

∥∥∥φE,ti − φE,t−1i

∥∥∥
2
.

(39)

Inequality (1) holds due to Jensen’s inequality, while inequality (2) follows from Assumption 1.

22

Published as a conference paper at ICLR 2023

For convenience (and perhaps clarity), we drop the superscript j denoting the class. Taking expec-
tation of both sides,

E
∥∥Ht+1 −Ht

∥∥
2
≤ L2

m∑
i=1

piE
∥∥∥φE,ti − φE,t−1i

∥∥∥
2

(1)

≤ L2

m∑
i=1

pi

(
E
∥∥∥φE,ti − φ

1
2 ,t
i

∥∥∥
2

+ E
∥∥∥φ 1

2 ,t
i − φE,t−1i

∥∥∥
2

)
(2)

≤ L2

m∑
i=1

pi

η0EV + E

∥∥∥∥∥∥
m∑
j

pjφ
E,t−1
i − φE,t−1i

∥∥∥∥∥∥
2

= L2

m∑
i=1

pi

η0EV + E

∥∥∥∥∥∥
m∑
j

pjφ
E,t−1
i − φ

1
2 ,t−1
i + φ

1
2 ,t−1
i − φE,t−1i

∥∥∥∥∥∥
2

(3)

≤ L2

m∑
i=1

pi

η0EV +

√√√√√E

∥∥∥∥∥∥
m∑
j

pjφ
E,t−1
i − φ

1
2 ,t−1
i + φ

1
2 ,t−1
i − φE,t−1i

∥∥∥∥∥∥
2

2

(4)

≤ L2

m∑
i=1

pi

(
η0EV +

√
E
∥∥∥φ 1

2 ,t−1
i − φE,t−1i

∥∥∥2
2

)

= L2

m∑
i=1

pi

η0EV +

√√√√√E

∥∥∥∥∥∥
E−1∑
e= 1

2

ηeg
e,t−1
i

∥∥∥∥∥∥
2

2

(5)

≤ L2

m∑
i=1

pi (η0EV + η0EV)

= 2η0L2EV,
(40)

where (1) follows from the triangle inequality; inequality (2) holds due to Assumption 3 and the
update rule of SGD; since f(x) =

√
x is concave, (3) follows from Jensen’s inequality; inequality

(4) holds due to the fact that E ‖EX −X‖2 ≤ E ‖X‖2, where X = φE,t−1i − φ
1
2 ,t−1
i ; inequality

(5) follows by using the fact that the learning rate ηe is non-increasing.

Similarly,

E
∥∥Qt+1 −Qt

∥∥
2
≤ L3

m∑
i=1

piE
∥∥∥ωE,ti − ωE,t−1i

∥∥∥
2

≤ 2η0L3EV

(41)

Combining the above inequalities, we have

E
[
L

1
2 ,(t+1)
i

]
≤ LE,ti +

η20L1

2
E2V 2 + 2λη0L3 (L2 + 1)EV + 2γη0L2EV. (42)

A.6.3 THEOREMS

Theorem 2. Instate Assumptions 1-3. For an arbitrary client, after each communication round the
loss function is bounded as

E
[
L

1
2 ,t+1
i

]
≤ L

1
2 ,t
i −

E−1∑
e= 1

2

(
ηe −

η2eL1

2

)∥∥∇Le,t∥∥2
2

+
η20L1E

2

(
EV 2 + σ2

)
+ 2λη0L3 (L2 + 1)EV + 2γη0L2EV.

(43)

23

Published as a conference paper at ICLR 2023

Fine-tuning the learning rates η0, λ and γ ensures that

η20L1E

2

(
EV 2 + σ2

)
+ 2λη0L3 (L2 + 1)EV + 2γη0L2EV −

E−1∑
e= 1

2

(
ηe −

η2eL1

2

)∥∥∇Le,t∥∥2
2
< 0.

(44)
Corollary 1. (FedHKD convergence) Let η0 > ηe > αη0 for e ∈ {1, . . . , E − 1}, 0 < α < 1. The
loss function of an arbitrary client monotonously decreases in each communication round if

αη0 < ηe <
2α2 ‖∇Le,t‖ − 4αλL3(L2 + 1)V − 4αγL2V

L1

(
α2 ‖∇Le,t‖22 + 1

)
(EV 2 + σ2)

,∀e ∈ {1, . . . , E − 1}, (45)

where α denotes the hyper-parameter controlling learning rate decay.
Proof:
Since η0 < ηe

α , in each local epoch e we have

η2eL1

2α2

(
EV 2 + σ2

)
+ 2λ

ηe
α
L3 (L2 + 1)V + 2γ

ηe
α
L2V −

(
ηe −

η2eL1

2

)∥∥∇Le,t∥∥2
2
< 0. (46)

Dividing both sides by ηe,
ηeL1

2α2

(
EV 2 + σ2

)
+ 2λ

1

α
L3 (L2 + 1)V + 2γ

1

α
L2V −

(
1− ηeL1

2

)∥∥∇Le,t∥∥2
2
< 0. (47)

Factoring out ηe on the left hand side yields(
L1

2α2

(
EV 2 + σ2

)
+
L1

2

∥∥∇Le,t∥∥2
2

)
ηe <

∥∥∇Le,t∥∥2
2
− 2λ

1

α
L3 (L2 + 1)V − 2γ

1

α
L2V. (48)

Dividing both sides by
(
L1

2α2

(
EV 2 + σ2

)
+ L1

2 ‖∇L
e,t‖22

)
results in

ηe <
2α2 ‖∇Le,t‖ − 4αλL3(L2 + 1)V − 4αγL2V

L1

(
α2 ‖∇Le,t‖22 + 1

)
(EV 2 + σ2)

,∀e ∈ {1, . . . , E − 1}. (49)

Theorem 3. (FedHKD convergence rate) Instate Assumptions 1-3 and define regret ∆ = L 1
2 ,1−L∗.

If the learning rate is set to η, for an arbitrary client after

T =
2∆

εE (2η − η2L1)− η2L1E (EV 2 + σ2)− 4ληL3 (L2 + 1)EV − 4γηL2EV
(50)

global rounds (ε > 0), it holds that

1

TE

T∑
t=1

E−1∑
e= 1

2

∥∥∇Le,t∥∥2
2
≤ ε. (51)

Proof:
According to Theorem 1,

1

TE

T∑
t=1

E−1∑
e= 1

2

(
η − η2L1

2

)∥∥∇Le,t∥∥2
2
≤ 1

TE

T∑
t=1

L
1
2 ,t
i − 1

TE

T∑
t=1

E
[
L

1
2 ,t+1
i

]
+
η2L1

2

(
EV 2 + σ2

)
+ 2ληL3 (L2 + 1)V + 2γηL2V

≤ 1

TE
∆ +

η2L1

2

(
EV 2 + σ2

)
+ 2ληL3 (L2 + 1)V + 2γηL2V

< ε

(
η − η2L1

2

)
.

(52)
Therefore,

∆

T
≤ εE

(
η − η2L1

2

)
− η2L1E

2

(
EV 2 + σ2

)
− 2ληL3 (L2 + 1)EV − 2γηL2EV, (53)

which is equivalent to

T ≥ 2∆

εE (2η − η2L1)− η2L1E (EV 2 + σ2)− 4ληL3 (L2 + 1)EV − 4γηL2EV
. (54)

24

	1 Introduction
	2 Related Work
	2.1 Heterogeneous Federated Learning
	2.2 Personalized Federated Learning
	2.3 Federated learning with Knowledge Distillation

	3 Methodology
	3.1 Problem Formulation
	3.2 Utilizing Hyper-Knowledge
	3.3 Global Hyper-Knowledge Aggregation
	3.4 Local Training Objective
	3.5 FedHKD: Summary of the Framework
	3.6 Convergence Analysis

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Analysis
	4.3 Privacy Analysis

	5 Conclusion
	A Appendix
	A.1 Experimental Details
	A.2 Data Partitioning
	A.3 Flow Diagram Illustrating Computation of Hyper-Knowledge
	A.4 Details of the FedHKD algorithm
	A.5 Proof of Lemma 1
	A.6 Convergence Analysis of FedHKD
	A.6.1 Assumptions
	A.6.2 Lemmas
	A.6.3 Theorems

